The pH-induced swelling of poly(2-vinylpyridine) microgel particles was studied using dynamic light scattering. The increase in particle diameter with decreasing pH was modeled using a well-established thermodynamic model for microgel swelling. The Maxwell construction was applied to extend the model and yield a prediction for a pH-responsive microgel across the entire pH range. The model predicts a first order phase transition for polymer-solvent combinations with a Flory interaction parameter, χ, greater than a critical value χ(c). The modified theory compared favorably to the dynamic light scattering data for the hydrodynamic diameter of microgel particles based on 2-vinylpyridine at different pH values. In particular, the swelling transition is both predicted theoretically and observed experimentally to occur at a pH lower than the pK(a) of the polymer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2011.12.064 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
Universidad Complutense de Madrid Facultad de Ciencias Quimicas, Inorganic Chemistry Department, 28034, Madrid, SPAIN.
Achieving high battery performance from low-cost, easily synthesisable electrode materials is crucial for advancing energy storage technologies. Metal organic frameworks (MOFs) combining inexpensive transition metals and organic ligands are promising candidates for high-capacity cathodes. Iron-chloranilate-water frameworks are herein reported to be produced in aqueous media under mild conditions.
View Article and Find Full Text PDFBiotechnol Bioeng
January 2025
Bioprocess Research and Development (BRD), WuXi Biologics, Shanghai, China.
Serving as a dedicated process analytical technology (PAT) tool for biomass monitoring and control, the capacitance probe, or dielectric spectroscopy, is showing great potential in robust pharmaceutical manufacturing, especially with the growing interest in integrated continuous bioprocessing. Despite its potential, challenges still exist in terms of its accuracy and applicability, particularly when it is used to monitor cells during stationary and decline phases. In this study, data pre-processing methods were first evaluated through cross-validation, where the first-order derivative emerged as the most effective method to diminish variability in prediction accuracy across different training datasets.
View Article and Find Full Text PDFLangmuir
January 2025
Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States.
Modification of silica interfaces by covalent attachment of functional ligands is a primary means of controlling the interfacial chemistry of porous silicas used in separations, environmental cleanup, and biosensing. Recently, modification of hydrophobic, -alkyl-silane-functionalized interfaces has been achieved through self-assembly of zwitterionic phospholipids or mixed-charged surfactants to form "hybrid bilayers", producing interfaces that mimic lipid-bilayer partitioning and provide shape-selective partitioning of aromatic hydrocarbons. Charged headgroups, however, introduce electrostatic interactions that strongly influence the retention of ionizable solutes and require careful control over pH and ionic strength in the solution phase.
View Article and Find Full Text PDFNat Commun
January 2025
Beijing Advanced Innovation Center for Materials Genome Engineering, Department of Physical Chemistry, University of Science and Technology Beijing, Beijing, China.
Electric field induced antiferroelectric-ferroelectric phase transition is a double-edged sword for energy storage properties, which not only offers a congenital superiority with substantial energy storage density but also poses significant challenges such as large polarization hysteresis and poor efficiency, deteriorating the operation and service life of capacitors. Here, entropy increase effect is utilized to simultaneously break the long-range antiferroelectric order and locally adjust the fourfold commensurate modulated polarization configuration, leading to a breakthrough in the trade-off between recoverable energy storge density (14.8 J cm) and efficiency (90.
View Article and Find Full Text PDFSci Bull (Beijing)
January 2025
Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China. Electronic address:
Z-classified topological phases lead to a larger-than-unity number of topological states. However, these multiple topological states are only localized at the corners in nonlocal systems. Here, first, we rigorously prove that the multiple topological states of nonlocal Su-Schrieffer-Heeger (SSH) chains can be inherited and realized by local aperiodic chains with only the nearest couplings.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!