While damaged peripheral nerves demonstrate some potential to regenerate, complete functional recovery remains infrequent, owing to a functional loss of supportive Schwann cells distal to the injury. An emerging solution to improve upon this intrinsic regenerative capacity is to supplement injured nerves with stem cells derived from various tissues. While many of these strategies have proven successful in animal models, few studies have examined the behavior of transplanted stem cells in vivo, including whether they survive and differentiate. In previous work, we demonstrated that cells derived from neonatal rodent dermis (skin-derived precursor cells, or SKPs) could improve regenerative parameters when transplanted distal to both acute and chronic nerve injuries in Lewis rats. The aim of this work was to track the fate of these cells in various nerve injury paradigms and determine the response of these cells to a known glial growth factor. Here, we report that SKPs survive, respond to local cues, differentiate into myelinating Schwann cells, and avoid complete clearance by the host's immune defenses for a minimum of 10weeks. Moreover, the ultimate fate of SKPs in vivo depends on the nerve environment into which they are injected and can be modified by inclusion of heregulin-1β.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scr.2011.11.004 | DOI Listing |
Neuroscience
January 2025
CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China. Electronic address:
Peripheral optogenetics is an emerging neuromodulation technique that regulates the activity of the nervous system outside the brain through the expression of photosensitive proteins and the application of photic stimulation. This article reviews recent advances in applying optogenetics to the spinal cord and peripheral nerves, offering a comprehensive understanding of functions and regulatory mechanisms of the peripheral nervous system through the modulation of specific neuronal activities. By showcasing novel opportunities for disease treatment, this technique opens new avenues in the field of psychophysiological research and neural regulation therapy.
View Article and Find Full Text PDFClin Imaging
January 2025
Hospital for Special Surgery, 535 East 70th Street, New York, NY 10021, United States of America. Electronic address:
Purpose: To develop an educational, interactive, ultra-high resolution, in vivo magnetic resonance (MR) neurography atlas for direct visualization of the brachial plexus and upper extremity.
Methods: A total of 16 adult volunteers without known peripheral neuropathy underwent magnetic resonance (MR) neurography of the brachial plexus and upper extremity. To improve vascular suppression, subjects received an intravenous infusion of ferumoxytol.
Sci Rep
January 2025
Department of Sports Medical Science, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
Postoperative adhesion around nerves sometimes results in sensory and motor dysfunctions. To prevent these disorders, we have developed an electrospun nanofiber sheet incorporating methylcobalamin (MeCbl), an active form of vitamin B12 with anti-inflammatory and neuroregenerative effects. This study aimed to investigate the neuroprotective effects of MeCbl sheets against postoperative adhesion and to compare the effects of MeCbl sheets with those of porcine small intestinal submucosa (SIS) sheets using a rat sciatic nerve adhesion model.
View Article and Find Full Text PDFInt J Oral Sci
January 2025
Department of Stomatology, Tangdu Hospital & State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, School of Stomatology, The Fourth Military Medical University, Xi'an, China.
Temporomandibular joint osteoarthritis (TMJ-OA) is a common disease often accompanied by pain, seriously affecting physical and mental health of patients. Abnormal innervation at the osteochondral junction has been considered as a predominant origin of arthralgia, while the specific mechanism mediating pain remains unclear. To investigate the underlying mechanism of TMJ-OA pain, an abnormal joint loading model was used to induce TMJ-OA pain.
View Article and Find Full Text PDFReg Anesth Pain Med
January 2025
Anesthesiology, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!