Objective: In early-onset schizophrenia (EOS), the earliest structural brain volumetric abnormalities appear in the parietal cortices. Early exposure to cannabis may represent an environmental risk factor for developing schizophrenia. This study characterized cerebral cortical gray matter structure in adolescents in regions of interest (ROIs) that have been implicated in EOS and cannabis use disorders (CUD).
Method: T1-weighted magnetic resonance images were acquired from adolescents with EOS (n = 35), CUD (n = 16), EOS + CUD (n = 13), and healthy controls (HC) (n = 51). Using FreeSurfer, brain volume was examined within frontal, temporal, parietal and subcortical ROIs by a 2 (EOS versus no EOS) × 2 (CUD versus no CUD) design using multivariate analysis of covariance. In ROIs in which volumetric differences were identified, additional analyses of cortical thickness and surface area were conducted.
Results: A significant EOS-by-CUD interaction was observed. In the left superior parietal region, both "pure" EOS and "pure" CUD had smaller gray matter volumes that were associated with lower surface area compared with HC. A similar alteration was observed in the comorbid group compared with HC, but there was no additive volumetric deficit found in the comorbid group compared with the separate groups. In the left thalamus, the comorbid group had smaller gray matter volumes compared with the CUD and HC groups.
Conclusions: These preliminary data indicate that the presence of a CUD may moderate the relationship between EOS and cerebral cortical gray matter structure in the left superior parietal lobe. Future research will follow this cohort over adolescence to further examine the impact of cannabis use on neurodevelopment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jaac.2011.11.001 | DOI Listing |
J Affect Disord
January 2025
Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Center for Cognitive Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China. Electronic address:
Background: We sought to evaluate the characteristics of eye movements in Alzheimer's disease (AD) patients with apathy (AD-A) and their ability to identify AD-A and explore the shared neurostructure of eye movements and apathy.
Methods: Total 32 normal controls, 36 AD-A and 72 AD with no apathy (AD-NA) patients were recruited. Parameters of smooth pursuit, fixation, prosaccade and antisaccade were compared among the three groups.
Neurosci Lett
January 2025
Department of Kinesiology and Applied Physiology, University of Delaware Newark DE USA. Electronic address:
Aging has a significant impact on brain structure, demonstrated by numerous MRI studies using diffusion tensor imaging (DTI). While these studies reveal changes in fractional anisotropy (FA) across different brain regions, they tend to focus on white matter tracts and cognitive regions, often overlooking gray matter and motor areas. Additionally, traditional DTI metrics can be affected by partial volume effects.
View Article and Find Full Text PDFMAGMA
January 2025
Imaging Physics, Fraunhofer Institute for Digital Medicine MEVIS, Max-von-Laue-Straße 2, 28359, Bremen, Germany.
Objectives: Caffeine, a known neurostimulant and adenosine antagonist, affects brain physiology by decreasing cerebral blood flow. It interacts with adenosine receptors to induce vasoconstriction, potentially disrupting brain homeostasis. However, the impact of caffeine on blood-brain barrier (BBB) permeability to water remains underexplored.
View Article and Find Full Text PDFAnn Clin Transl Neurol
January 2025
NEUROFARBA Department, Neurosciences Section, University of Florence, Florence, Italy.
Objectives: We aim to investigate cognitive phenotype distribution and MRI correlates across pediatric-, elderly-, and adult-onset MS patients as a function of disease duration.
Methods: In this cross-sectional study, we enrolled 1262 MS patients and 238 healthy controls, with neurological and cognitive assessments. A subset of 222 MS patients and 92 controls underwent 3T-MRI scan for brain atrophy and lesion analysis.
Nutrients
January 2025
Department of Psychiatry and Behavioral Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
Background/objectives: While studies in rat pups suggest that early zinc exposure is critical for optimal brain structure and function, associations of prenatal zinc intake with measures of brain development in infants are unknown. This study aimed to assess the associations of maternal zinc intake during pregnancy with MRI measures of brain tissue microstructure and neurodevelopmental outcomes, as well as to determine whether MRI measures of the brain mediated the relationship between maternal zinc intake and neurodevelopmental indices.
Methods: Forty-one adolescent mothers were recruited for a longitudinal study during pregnancy.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!