Ammonia chemistry within Danish churches.

Sci Total Environ

Institute of Physics and Chemistry, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark.

Published: February 2012

The increase of agricultural intensity over the last century in rural Denmark has meant that ammonia has been regarded as a significant environmental problem. The deterioration of murals in rural churches is also a matter of concern and focused attention on the potential for ammonia to accelerate damage. Ammonia concentrations measured over 12 months inside and outside nine churches often show a spring maximum outdoors, hinting at the importance of farming activities. The ammonia concentrations are on average some three times greater indoors than outdoors and mass balance calculations suggest that this arises from the decomposition of ammonium nitrate aerosols. The emissions may result from reactions of aerosols deposited at the alkaline walls, which also leads to calcium nitrate becoming the major soluble salt at the very surface layer. The quantities remain small enough, that they probably do not participate in salt damage to the murals.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2011.12.032DOI Listing

Publication Analysis

Top Keywords

ammonia concentrations
8
ammonia
5
ammonia chemistry
4
chemistry danish
4
danish churches
4
churches increase
4
increase agricultural
4
agricultural intensity
4
intensity century
4
century rural
4

Similar Publications

In the present research, an attempt has been made to develop a new thin film microextraction method for the extraction of several polycyclic aromatic hydrocarbons from aqueous samples collected from different industrial units prior to their analysis by gas chromatography combined with a flame ionization detector. In this approach, a thin iron mesh was modified by the formation of iron(II) oxinate on its surface and used for the extraction of analytes without an additional sorbent. For this purpose, first, the mesh was immersed in a sulfuric acid solution and then transferred into an 8-hydroxy quinoline (oxine) solution dissolved in ammonia solution.

View Article and Find Full Text PDF

Semiconductor metal oxide (SMO) gas sensors are gaining prominence owing to their high sensitivity, rapid response, and cost-effectiveness. These sensors detect changes in resistance resulting from oxidation-reduction reactions with target gases, responding to a variety of gases simultaneously. However, their inherent limitations lie in selectivity.

View Article and Find Full Text PDF

This study explored morphological, physiological, molecular, and epigenetic responses of tomatoes (Solanum lycopersicum) to soil contamination with polyethylene nanoplastics (PENP; 0.01, 0.1, and 1 gkg soil).

View Article and Find Full Text PDF

Investigations of the spatial-temporal variations of nutrients within mangrove coastal zones are essential for assessing the environmental status of an aquatic ecosystems. However, major processes controlling nitrate cycle along the submarine groundwater discharge (SGD) pathway from the mangrove areas to adjacent tidal creek remain underexplored. A time series measurement over a 25 h tidal cycle was conducted in Qinglan Bay tidal creek (Hainan Island, China).

View Article and Find Full Text PDF

Aerobic granular sludge (AGS) is usually considered to be a biofilm system consisting of granules only, although practical experience suggests that flocs and granules of various sizes co-exist. This study thus focused on understanding the contribution of flocs and granules of various sizes to nitrification in a full-scale AGS-based wastewater treatment plant (WWTP) operated as a sequencing batch reactor (SBR). The size distribution in terms of total suspended solids (TSS) and the distribution of the nitrifying communities and activities were monitored over 14 months.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!