A chemical genetic approach for covalent inhibition of analogue-sensitive aurora kinase.

ACS Chem Biol

Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany.

Published: April 2012

The perturbation of protein kinases with small organic molecules is a powerful approach to dissect kinase function in complex biological systems. Covalent kinase inhibitors that target thiols in the ATP binding pocket of the kinase domain proved to be ideal reagents for the investigation of highly dynamic cellular processes. However, due to the covalent inhibitors' possible off-target reactivities, it is required that the overall shape of the inhibitor as well as the intrinsic reactivity of the electrophile are precisely tuned to favor the reaction with only the desired cysteine. Here we report on the design and biological characterization of covalent anilinoquinazolines as potent inhibitors of genetically engineered Aurora kinase in fission yeast.

Download full-text PDF

Source
http://dx.doi.org/10.1021/cb200465cDOI Listing

Publication Analysis

Top Keywords

aurora kinase
8
kinase
5
chemical genetic
4
genetic approach
4
covalent
4
approach covalent
4
covalent inhibition
4
inhibition analogue-sensitive
4
analogue-sensitive aurora
4
kinase perturbation
4

Similar Publications

Nowadays, chemotherapy and immunotherapy remain the major treatment strategies for Triple-Negative Breast Cancer (TNBC). Identifying biomarkers to pre-select and subclassify TNBC patients with distinct chemotherapy responses is essential. In the current study, we performed an unbiased Reverse Phase Protein Array (RPPA) on TNBC cells treated with chemotherapy compounds and found a leading significant increase of phosphor-AURKA/B/C, AURKA, AURKB, and PLK1, which fall into the mitotic kinase group.

View Article and Find Full Text PDF

Background: Real-world data regarding patients with non-small cell lung cancer (NSCLC) with EGFR exon 20 insertion (ex20ins) mutations receiving mobocertinib are limited. This study describes these patients' characteristics and outcomes.

Methods: A chart review was conducted across three countries (Canada, France, and Hong Kong), abstracting data from eligible patients (NCT05207423).

View Article and Find Full Text PDF

Aurora kinase B (AurB) is a pivotal regulator of mitosis, making it a compelling target for cancer therapy. Despite significant advances in protein kinase inhibitor development, there are currently no AurB inhibitors readily available for therapeutic use. This study introduces a machine learning-assisted drug repurposing framework integrating quantitative structure-activity relationship (QSAR) modeling, molecular fingerprints-based classification, molecular docking, and molecular dynamics (MD) simulations.

View Article and Find Full Text PDF

Background/objectives: Breast cancer (BC) remains one of the most prevalent and deadly cancers worldwide, with limited access to advanced treatments in developing regions. There is a critical need for novel therapies with unique mechanisms of action, especially to overcome resistance to conventional platinum-based drugs. This study investigates the anticancer potential of the ruthenium complex Bis(quinolin-8-olato)bis(triphenylphosphine)ruthenium(II) (Ru(quin)) in ER-positive (T47D) and triple-negative (MDA-MB-231) BC cell lines.

View Article and Find Full Text PDF

Epstein-Barr virus (EBV), an oncogenic gamma-herpesvirus, belongs to group 1 carcinogen and is implicated in various cancers, including gastric cancer. Aurora Kinase A is a major mitotic protein kinase that regulates mitotic progression; overexpression and hyperactivation of AURKA commonly promote genomic instability in many tumours. However, the relationship of functional residues of AURKA and EBV in gastric cancer progression remains unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!