Berry fruit enhances beneficial signaling in the brain.

J Agric Food Chem

USDA-ARS, Human Nutrition Research Center on Aging at Tufts University, 711 Washington Street, Boston, Massachusetts 02111, United States.

Published: June 2012

Increased lifespans have led to population aging and brought attention to healthcare concerns associated with old age. A growing body of preclinical and clinical research has identified neurological benefits associated with the consumption of berry fruits. In addition to their now well-known antioxidant effects, dietary supplementation with berry fruits also has direct effects on the brain. Intake of these fruits may help to prevent age-related neurodegeneration and resulting changes in cognitive and motor function. In cell and animal models, berry fruits mediate signaling pathways involved in inflammation and cell survival in addition to enhancing neuroplasticity, neurotransmission, and calcium buffering, all of which lead to attenuation of age- and pathology-related deficits in behavior. Recent clinical trials have extended these antioxidant, anti-inflammatory, and cognition-sparing effects to humans. This paper reviews recent evidence for the beneficial signaling effects of berry fruits on the brain and behavior.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jf2036033DOI Listing

Publication Analysis

Top Keywords

berry fruits
16
beneficial signaling
8
berry
5
fruits
5
berry fruit
4
fruit enhances
4
enhances beneficial
4
signaling brain
4
brain increased
4
increased lifespans
4

Similar Publications

Upcycling industrial peach waste to produce dissolving pulp.

Environ Sci Pollut Res Int

January 2025

Laboratory of Design and Development of Innovative Knitted Textiles and Garments, Department of Industrial Design and Production Engineering, University of West Attica, 12244, Egaleo, Attica, Greece.

This study investigates the production of high-purity cellulose pulp from peach (Prunus persica) fruit wastes generated during the processing of a Greek compote and juice production industry. A three-step chemical process is used, including alkaline treatment with NaOH, organic acid (acetic and formic) treatment, and hydrogen peroxide treatment, with the goal of cellulose extraction and purification. A fractional factorial design optimized reagent levels, revealing the strong influence of NaOH concentration on α-cellulose content and degree of polymerization.

View Article and Find Full Text PDF

SlABCG9 Functioning as a Jasmonic Acid Transporter Influences Tomato Resistance to .

J Agric Food Chem

January 2025

College of Food Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Tai'an 271018 Shandong, China.

Jasmonic acid (JA) is crucial for plant stress responses, which rely on intercellular jasmonate transport. However, JA transporters have not been fully identified, especially in tomato ( L.).

View Article and Find Full Text PDF

Dopamine can play opposing physiological roles depending on the receptor subtype. In the fruit fly , and encode the D- and D-like receptors, respectively, and are reported to oppositely regulate intracellular cAMP levels. Here, we profiled the expression and subcellular localization of endogenous Dop1R1 and Dop2R in specific cell types in the mushroom body circuit.

View Article and Find Full Text PDF

The aim of this work was to determine the nutritional value and antioxidant potential of the pulp and seeds of the fruit of grown and consumed in the Eastern Region of Cameroon. The physicochemical and nutritional analyses of the pulp and seeds showed that the water content ranged from 89.33 to 95.

View Article and Find Full Text PDF

The GRAS transcription factor PtrPAT1 of functions in cold tolerance and modulates glycine betaine content by regulating the -like gene.

Hortic Res

January 2025

National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China.

GRAS, termed after gibberellic acid insensitive (GAI), RGA (repressor of GA1), and SCR (scarecrow), is a plant-specific transcription factor crucial for plant development and stress response. However, understanding of the functions played by the GRAS members and their target genes in citrus is limited. In this study, we identified a cold stress-responsive GRAS gene from , designated as PtrPAT1, by yeast one-hybrid library screening using the promoter of , a betaine aldehyde dehydrogenase (BADH)-like gene.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!