We have synthesized a series of four new promising D-π-A conjugated organic sensitizers with a proaromatic 4H-pyran-4-ylidene as a donor, a thiophene ring in the bridge, and 2-cyanoacrilic acid as acceptor. Comparison between different donor substituents and the modification of the thiophene ring resulted in molar extinction coefficients as high as 36399 M(-1) cm(-1) at 551 nm. The photovoltaic properties of the DSSCs demonstrate power conversion efficiencies as high as 5.4%.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ol203298r | DOI Listing |
ACS Nano
December 2024
Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, P.R. China.
Ferroptosis plays an important role in radiotherapy (RT), and the induction of ferroptosis can effectively sensitize radiotherapy. However, the therapeutic efficiency is always affected by ferroptosis resistance, especially SLC7A11 (Solute Carrier Family 7 Member 11)-cystine-cysteine-GSH (glutathione)-GPX4 (glutathione peroxidase 4) pathway-mediated resistance. In this study, tumor-microenvironment self-activated high-Z element-containing nanoferroptosis inducers, PEGylated Fe-Bi-SS metal-organic frameworks (FBSP MOFs), were developed to sensitize RT.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Jihua Hengye Electronic Materials Co. Ltd., Foshan, Guangdong Province 528200, P. R. China.
Charge generation layers (CGLs) play crucial roles in determining the electroluminescence (EL) performance of tandem organic light-emitting diodes (OLEDs). However, acquiring negligible voltage drops across the CGL unit and high-efficiency multiplications remains challenging. Here, we propose barrier-free strategies to compose a high-performance p-i-n type CGL intermediate by introducing a Yb/HI-9 modification at the heterojunction and a novel n-dopant, Yb:1,3-bis(9-phenyl-1,10-phenanthrolin-2-yl)benzene (mdPPhen), as the n-CGL.
View Article and Find Full Text PDFACS Omega
December 2024
Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal 700032, India.
Cancer stem cells (CSCs) are responsible for chemoresistance and tumor relapse in many solid malignancies, including lung and ovarian cancer. Ellagic acid (EA), a natural polyphenol, exhibits anticancer effects on various human malignancies. However, its impact and mechanism of action on cancer stem-like cells (CSLCs) are only partially understood.
View Article and Find Full Text PDFJ Mater Chem B
December 2024
Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran.
The increasing effective, detectable, and targeted anticancer systems are driven by the growing cancer incidence and the side effects of current drugs. Natural products like saponin and apigenin have emerged as valuable compounds for precise treatment. Recent advancements in bioactive metal-organic frameworks (MOFs) have introduced multifunctional particles suitable for cellular imaging, targeted drug delivery, and early cancer treatment.
View Article and Find Full Text PDFJ Am Chem Soc
December 2024
Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, United States.
Donor-acceptor dyads are promising materials for improving triplet-sensitized photon upconversion due to faster intramolecular energy transfer (ET), which unfortunately competes with charge transfer (CT) dynamics. To circumvent the issue associated with CT, we propose a novel purely organic donor-acceptor dyad, where the CT character is confined within the donor moiety. In this work, we report the synthesis and characterization of a stable organic radical donor-triplet acceptor dyad () consisting of the acceptor perylene () linked to the donor (4--carbazolyl-2,6-dichlorophenyl)-bis(2,4,6-trichlorophenyl)methyl radical ().
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!