We have developed a new mass spectrometry (MS) based approach for continuous, spatially resolved in vitro biochemical detection and demonstrated its utility in a 3-D cell culture system. Extracellular liquid is passively extracted at a low flow rate (~10 nL/s) through a small bore silica capillary (ID 50 μm); inline microdialysis (MD) removes ions that would interfere with mass spectrometric analysis, and the sample is ionized by nanoelectrospray ionization (nano-ESI) and mass analyzed in a time-of-flight mass spectrometer. The system successfully detects low-volume, low-concentration releases of a small protein (8 μL of 5 μM cytochrome-c, molecular mass ~12 kDa) and exhibits ~1 min temporal resolution. The system also displays sensitivity to probe proximity to the sample release point. Due to the sensitivity of ESI-MS and its ability to simultaneously detect and identify multiple unanticipated biochemicals, this approach shows considerable potential as a biomarker discovery tool.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ac203009sDOI Listing

Publication Analysis

Top Keywords

nanoelectrospray ionization
8
spatially resolved
8
cell culture
8
mass
5
ambient nanoelectrospray
4
ionization in-line
4
in-line microdialysis
4
microdialysis spatially
4
resolved transient
4
transient biochemical
4

Similar Publications

Capillary vibrating sharp-edge spray ionization (cVSSI) has been used to control the droplet charging of nebulized microdroplets and monitor effects on protein ion conformation makeup as determined by mass spectrometry (MS). Here it is observed that the application of voltage results in noticeable differences to the charge state distributions (CSDs) of ubiquitin ions. The data can be described most generally in three distinct voltage regions: Under low-voltage conditions (<+200 V, LV regime), low charge states (2+ to 4+ ions) dominate the mass spectra.

View Article and Find Full Text PDF

Background: The biopharmaceutical industry is increasingly interested in the analysis of trace metals due to their significant impact on product quality and drug safety. Certain metals can potentially accelerate the formation of degradants or aggregates in biotherapeutic proteins, leading to drug product quality concerns. A better understanding of metal-mAb interactions would aid in the development of purification processes and formulations, thereby ensuring better drug quality and safety.

View Article and Find Full Text PDF

Quasi-Simultaneous Identification of Polar and Neutral Lipids in Mass Spectrometry by kHz Switching of Electrospray and Plasma Ionization.

Anal Chem

January 2025

Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Bunsen-Kirchhoff-Straße 11, D-44139 Dortmund, Germany.

The identification of polar and neutral lipid species as biomarkers in complex biological samples is a key task in clinical and life sciences. Electrospray and plasma-based ionization techniques are necessary to cover the full range of lipidomes, owing to their limited molecular polarity ranges. However, combining both to generate hybrid spectra is difficult without averaging spectra, as electrospray and plasma sources operate under vastly different conditions.

View Article and Find Full Text PDF

Newborn screening for acylcarnitine-related inherited metabolic diseases (IMDs) is a critical test after birth. Conventional extraction methods require shaking with heating, centrifugation, nitrogen blowing, redissolution, etc., and the total time is more than 1 h.

View Article and Find Full Text PDF

Imaged capillary isoelectric focusing and online mass spectrometry for milk whey protein characterization in dairy products.

Anal Biochem

April 2025

Advanced Electrophoresis Solutions Ltd., 380 Jamieson Parkway, Unit 7 and 8, ON, N3C 4N4, Canada; AES Biotech Jiaxing Ltd., No. 501 South Changsheng Road, Economic and Technological Development Zone, Jiaxing City, Zhejiang Province, PR China. Electronic address:

Characterizing major bovine milk proteins, including whey and casein, is of significant interest in the dairy industry. The diverse array of protein proteoforms can be different in terms of genetic variation, breed ways, lactation stage, and animal nutritional status. Current routine methods for bovine milk protein profiling are typically based on immunological techniques, infrared spectroscopy, slab gel isoelectric focusing, capillary electrophoresis, and high-performance liquid chromatography.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!