Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The multistage Rh-catalyzed dehydrocoupling of the secondary amine-borane H(3)B·NMe(2)H, to give the cyclic amino-borane [H(2)BNMe(2)](2), has been explored using catalysts based upon cationic [Rh(PCy(3))(2)](+) (Cy = cyclo-C(6)H(11)). These were systematically investigated (NMR/MS), under both stoichiometric and catalytic regimes, with the resulting mechanistic proposals for parallel catalysis and autocatalysis evaluated by kinetic simulation. These studies demonstrate a rich and complex mechanistic landscape that involves dehydrogenation of H(3)B·NMe(2)H to give the amino-borane H(2)B═NMe(2), dimerization of this to give the final product, formation of the linear diborazane H(3)B·NMe(2)BH(2)·NMe(2)H as an intermediate, and its consumption by both B-N bond cleavage and dehydrocyclization. Subtleties of the system include the following: the product [H(2)BNMe(2)](2) is a modifier in catalysis and acts in an autocatalytic role; there is a parallel, neutral catalyst present in low but constant concentration, suggested to be Rh(PCy(3))(2)H(2)Cl; the dimerization of H(2)B═NMe(2) can be accelerated by MeCN; and complementary nonclassical BH···HN interactions are likely to play a role in lowering barriers to many of the processes occurring at the metal center. These observations lead to a generic mechanistic scheme that can be readily tailored for application to many of the transition-metal and main-group systems that catalyze the dehydrocoupling of H(3)B·NMe(2)H.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ja2112965 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!