Towards Quantification of Functional Breast Images Using Dedicated SPECT With Non-Traditional Acquisition Trajectories.

IEEE Trans Nucl Sci

Medical Physics Program and Radiology Department, Duke University, Durham, NC 27710 USA ( ).

Published: October 2011

Quantification of radiotracer uptake in breast lesions can provide valuable information to physicians in deciding patient care or determining treatment efficacy. Physical processes (e.g., scatter, attenuation), detector/collimator characteristics, sampling and acquisition trajectories, and reconstruction artifacts contribute to an incorrect measurement of absolute tracer activity and distribution. For these experiments, a cylinder with three syringes of varying radioactivity concentration, and a fillable 800 mL breast with two lesion phantoms containing aqueous (99m)Tc pertechnetate were imaged using the SPECT sub-system of the dual-modality SPECT-CT dedicated breast scanner. SPECT images were collected using a compact CZT camera with various 3D acquisitions including vertical axis of rotation, 30° tilted, and complex sinusoidal trajectories. Different energy windows around the photopeak were quantitatively compared, along with appropriate scatter energy windows, to determine the best quantification accuracy after attenuation and dual-window scatter correction. Measured activity concentrations in the reconstructed images for syringes with greater than 10 µCi /mL corresponded to within 10% of the actual dose calibrator measured activity concentration for ±4% and ±8% photopeak energy windows. The same energy windows yielded lesion quantification results within 10% in the breast phantom as well. Results for the more complete complex sinsusoidal trajectory are similar to the simple vertical axis acquisition, and additionally allows both anterior chest wall sampling, no image distortion, and reasonably accurate quantification.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3259569PMC
http://dx.doi.org/10.1109/TNS.2011.2165223DOI Listing

Publication Analysis

Top Keywords

energy windows
16
acquisition trajectories
8
vertical axis
8
measured activity
8
quantification
5
breast
5
quantification functional
4
functional breast
4
breast images
4
images dedicated
4

Similar Publications

Rapid Na Transport Pathway and Stable Interface Design Enabling Ultralong Life Solid-State Sodium Metal Batteries.

Angew Chem Int Ed Engl

December 2024

School of Materials Science and Engineering, State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Technology Innovation Center of High Performance Resin Materials (Liaoning Province), Dalian University of Technology, Dalian, 116024, China.

Sodium-metal batteries (SMBs) using solid-state polymer electrolytes (SPEs) show impressive superiority in energy density and safety. As promising candidates for SPEs, solid-state plastic crystal electrolytes (SPCE) based on succinonitrile (SN) plastic crystal could achieve high ion conductivity and wide voltage window. Nonetheless, the notorious SN decomposition reaction on the electrode/electrolyte interface seriously challenges the stable operation of the battery.

View Article and Find Full Text PDF

Effects of Nutritional Status During Sexual Maturation and Resource Availability on the Resource Allocation of Females in Burying Beetles.

Ecol Evol

January 2025

Henan Field Observation and Research Station of Headwork Wetland Ecosystem of the Central Route of South-To-North Water Diversion Project College of Life Sciences, Nanyang Normal University Nanyang China.

Resource availability should have consequences for life-history functions and trade-offs among them because it influences the amounts of resources allocated to different functions. Nutritional status during a key developmental window (sexual maturation) may also have an important impact on life-history functions and such trade-offs. However, less is known about whether and how they interact to influence the resource allocation of individuals.

View Article and Find Full Text PDF

Of the few weberite-type Na-ion cathodes explored to date, NaFeF exhibits the best performance, with capacities up to 184 mAh/g and energy densities up to 550 Wh/kg reported for this material. However, the development of robust structure-property relationships for this material is complicated by its tendency to form as a mixture of metastable polymorphs, and transform to a lower-energy Na FeF perovskite compound during electrochemical cycling. Our first-principles-guided exploration of Fe-based weberite solid solutions with redox-inactive Mg and Al predicts an enhanced thermodynamic stability of NaMg Fe F as the Mg content is increased, and the = 0.

View Article and Find Full Text PDF

Molecular Engineering of 2', 7'-Dichlorofluorescein to Unlock Efficient Superoxide Anion NIR-II Fluorescent Imaging and Tumor Photothermal Therapy.

Small

January 2025

Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, P. R. China.

Although classical fluorescent dyes feature advantages of high quantum yield, tunable "OFF-ON" fluorescence, and modifiable chemical structures, etc., their bio-applications in deep tissue remains challenging due to their excessively short emission wavelength (that may lead to superficial tissue penetration depth). Therefore, there is a pressing need for pushing the wavelength of classical dyes from visible region to NIR-II window.

View Article and Find Full Text PDF

The plastic waste accumulation requires facile yet effective solutions. Currently mechanical recycling typically leads to downcycling, while the environmental footprint of chemical recycling is often unacceptable. Here, we introduce a dual circularity concept, where rational molecular design paves the way for complementary closed-loop mechanical and chemical recyclability under mild conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!