CTLA-4 is one of the most important negative regulators of the T cell immune response. However, the subcellular distribution of CTLA-4 is unusual for a receptor that interacts with cell surface transmembrane ligands in that CTLA-4 is rapidly internalized from the plasma membrane. It has been proposed that T cell activation can lead to stabilization of CTLA-4 expression at the cell surface. Here we have analyzed in detail the internalization, recycling, and degradation of CTLA-4. We demonstrate that CTLA-4 is rapidly internalized from the plasma membrane in a clathrin- and dynamin-dependent manner driven by the well characterized YVKM trafficking motif. Furthermore, we show that once internalized, CTLA-4 co-localizes with markers of recycling endosomes and is recycled to the plasma membrane. Although we observed limited co-localization of CTLA-4 with lysosomal markers, CTLA-4 was nonetheless degraded in a manner inhibited by lysosomal blockade. T cell activation stimulated mobilization of CTLA-4, as judged by an increase in cell surface expression; however, this pool of CTLA-4 continued to endocytose and was not stably retained at the cell surface. These data support a model of trafficking whereby CTLA-4 is constitutively internalized in a ligand-independent manner undergoing both recycling and degradation. Stimulation of T cells increases CTLA-4 turnover at the plasma membrane; however, CTLA-4 endocytosis continues and is not stabilized during activation of human T cells. These findings emphasize the importance of clathrin-mediated endocytosis in regulating CTLA-4 trafficking throughout T cell activation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3308817 | PMC |
http://dx.doi.org/10.1074/jbc.M111.304329 | DOI Listing |
PLoS One
January 2025
School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia.
The cytotoxic T-lymphocyte antigen-4 (CTLA4) is essential in controlling T cell activity within the immune system. Thus, uncovering the molecular dynamics of single nucleotide polymorphisms (SNPs) within the CTLA4 gene is critical. We identified the non-synonymous SNPs (nsSNPs), examined their impact on protein stability, and identified the protein sequences associated with them in the human CTLA4 gene.
View Article and Find Full Text PDFAm J Reprod Immunol
February 2025
Department of Anthropology, University of California, Los Angeles, California, USA.
Problem: Regulatory B-cells (Bregs, CD19CD24CD38) are a specialized B-cell subset that suppresses immune responses and potentially contribute to the maintenance of an immune-privileged environment for fetal development during pregnancy. However, little is known about the surrounding immunological environment of Bregs in gestational physiology. The relationship of regulatory T-cells (Tregs, CD4CD25CD127FoxP3) to Bregs in coordinating immunoregulation during pregnancy is unknown.
View Article and Find Full Text PDFMAbs
December 2025
Biotherapeutics and Genetic Medicine, AbbVie, South San Francisco, CA, USA.
Testing of candidate monoclonal antibody therapeutics in preclinical models is an essential step in drug development. Identification of antibody therapeutic candidates that bind their human targets and cross-react to mouse orthologs is often challenging, especially for targets with low sequence homology. In such cases, surrogate antibodies that bind mouse orthologs must be used.
View Article and Find Full Text PDFPol J Pathol
January 2025
Department of Pulmonary Medicine, Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China.
Mutations in the KRAS gene in non-small cell lung cancer (NSCLC) are common drivers. Gene expression and mutation data of NSCLC were collected from the TCGA dataset. DEGs between KRAS mutations and wild type were identified, and enrichment analysis was performed.
View Article and Find Full Text PDFPLoS Pathog
January 2025
Malaria Functional Genomics Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, Maryland, United States of America.
Malaria is a complex parasitic disease caused by species of Plasmodium parasites. Infection with the parasites can lead to a spectrum of symptoms and disease severity, influenced by various parasite, host, and environmental factors. There have been some successes in developing vaccines against the disease recently, but the vaccine efficacies require improvement.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!