Purpose: To systematically review algorithms to identify transfusion-related sepsis or septicemia in administrative data, with a focus on studies that have examined the validity of the algorithms.

Methods: A literature search was conducted using PubMed, the database of the Iowa Drug Information Service (IDIS/Web), and Embase. A Google Scholar search was conducted because of difficulty identifying relevant studies. Reviews were conducted by two investigators to identify studies using data sources from the USA or Canada, because these data sources were most likely to reflect the coding practices of Mini-Sentinel data sources.

Results: No studies that were identified that used administrative data to identify sepsis or septicemia related to transfusion of blood products. Thus, four studies that studied the validity of algorithms to identify sepsis and two that studied algorithms to identify allogeneic blood transfusion are described in this review. Two studies found acceptable positive predictive values of 80% and 89% for algorithms to identify sepsis in hospitalized patients. One study reported a negative predictive value of 80% in hospitalized patients, and another, a sensitivity of 75%. One study of veterans receiving surgery reported much worse performance characteristics. Two studies reported near-perfect specificity of codes for allogeneic red blood cell transfusion, but sensitivity ranged from 21% to 83%.

Conclusions: There is no information to assess the validity of algorithms to identify transfusion-related sepsis or septicemia. Codes to identify sepsis performed well in most studies. Algorithms to identify transfusions need further research that includes a broader range of transfusion types.

Download full-text PDF

Source
http://dx.doi.org/10.1002/pds.2322DOI Listing

Publication Analysis

Top Keywords

algorithms identify
24
identify sepsis
16
transfusion-related sepsis
12
sepsis septicemia
12
identify
9
identify transfusion-related
8
administrative data
8
studies
8
search conducted
8
data sources
8

Similar Publications

Background: Alzheimer's disease (AD) is a progressive neurodegenerative disorder affecting millions worldwide, leading to cognitive and functional decline. Early detection and intervention are crucial for enhancing the quality of life of patients and their families. Remote Monitoring Technologies (RMTs) offer a promising solution for early detection by tracking changes in behavioral and cognitive functions, such as memory, language, and problem-solving skills.

View Article and Find Full Text PDF

Background: The treatment of glioblastomas (GBM) with radiation therapy is extremely challenging due to their invasive nature and high recurrence rate within normal brain tissue.

Purpose: In this work, we present a new metric called the tumour spread (TS) map, which utilizes diffusion tensor imaging (DTI) to predict the probable direction of tumour cells spread along fiber tracts. We hypothesized that the TS map could serve as a predictive tool for identifying patterns of likely recurrence in patients with GBM and, therefore, be used to modify the delivery of radiation treatment to pre-emptively target regions at high risk of tumour spread.

View Article and Find Full Text PDF

Background: Immunotherapy is a significant risk factor for severe COVID-19 in multiple myeloma (MM) patients. Understanding how immunotherapies lead to severe COVID-19 is crucial for improving patient outcomes.

Methods: Human protein microarrays were used to examine the expression of 440 protein molecules in MM patients treated with bispecific T-cell engagers (BiTe) (n = 9), anti-CD38 monoclonal antibodies (mAbs) (n = 10), and proteasome inhibitor (PI)-based regimens (n = 10).

View Article and Find Full Text PDF

Noise-induced hearing loss (NIHL) is a common occupational condition. The aim of this study was to develop a classification model for NIHL on the basis of both functional magnetic resonance imaging (fMRI) and structural magnetic resonance imaging (sMRI) by applying machine learning methods. fMRI indices such as the amplitude of low-frequency fluctuation (ALFF), fractional amplitude of low-frequency fluctuation (fALFF), regional homogeneity (ReHo), degree of centrality (DC), and sMRI indices such as gray matter volume (GMV), white matter volume (WMV), and cortical thickness were extracted from each brain region.

View Article and Find Full Text PDF

Integrating mitochondrial and lysosomal gene analysis for breast cancer prognosis using machine learning.

Sci Rep

January 2025

Departments of Breast Surgery, First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China.

The impact of mitochondrial and lysosomal co-dysfunction on breast cancer patient outcomes is unclear. The objective of this study is to develop a predictive machine learning (ML) model utilizing mitochondrial and lysosomal co-regulators in order to provide a foundation for future studies focused on breast cancer (BC) patients' stratification and personalized interventions. Firstly, Differences and correlations of mitochondrial and lysosome related genes were screened and validated by differential analysis, copy number variation (CNV), single nucleotide polymorphism (SNPs) and correlation analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!