Weak resonant double Hopf bifurcations in an inertial four-neuron model with time delay.

Int J Neural Syst

School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, PR China.

Published: February 2012

In this paper, a four-neuron delayed bidirectional associative memory (BAM) model with inertia is considered. Weak resonant double Hopf bifurcations are completely analyzed in the parameter space of the coupling weight and the coupling delay by the perturbation-incremental scheme (PIS). Numerical simulations are given for justifying the theoretical results. To the best of our knowledge, the paper is the first one to introduce inertia to a four-neuron delayed system and clarify the relationship between system parameters and dynamical behaviors.

Download full-text PDF

Source
http://dx.doi.org/10.1142/S0129065712002980DOI Listing

Publication Analysis

Top Keywords

weak resonant
8
resonant double
8
double hopf
8
hopf bifurcations
8
four-neuron delayed
8
bifurcations inertial
4
inertial four-neuron
4
four-neuron model
4
model time
4
time delay
4

Similar Publications

Accurate metacognitive judgments about an individual's performance in a mental task require the brain to have access to representations of the quality and difficulty of first-order cognitive processes. However, little is known about how accurate metacognitive judgments are implemented in the brain. Here, we combine brain stimulation with functional neuroimaging to determine the neural and psychological mechanisms underlying the frontopolar cortex's (FPC) role in metacognition.

View Article and Find Full Text PDF

We present a simple approach to enhance the signal strength and detection sensitivity of weak photoacoustic signals, by using ultrathin, high refractive index, absorbing semiconductor layers on metal surfaces. They form etalon resonances with reflection minima already for layer thicknesses of only a few tens of nm. Strain waves induce changes in the physical/optical thickness of the layers and/or changes in the phase and amplitude of light upon reflection from the metal-semiconductor interface.

View Article and Find Full Text PDF

ConspectusThe discovery of reversible hydrogenation using metal-free phosphoborate species in 2006 marked the official advent of frustrated Lewis pair (FLP) chemistry. This breakthrough revolutionized homogeneous catalysis approaches and paved the way for innovative catalytic strategies. The unique reactivity of FLPs is attributed to the Lewis base (LB) and Lewis acid (LA) sites either in spatial separation or in equilibrium, which actively react with molecules.

View Article and Find Full Text PDF

Polarization-Independent High-Q Phase Gradient Metasurfaces.

Nano Lett

January 2025

Department of Electrical & Systems Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States.

Dielectric metasurfaces have emerged as an unprecedented platform for precise wavefront manipulation at subwavelength scales with nearly zero loss. When aiming at dynamic applications such as AR/VR and LiDAR, high-quality factor (high-Q) phase gradient metasurfaces have emerged as a way to boost weak light-material interactions in flat-optical components. However, resonant features are naturally tied to polarization, limiting devices to operating on a single polarization state, which reduces the efficiency and adaptability of wave-shaping.

View Article and Find Full Text PDF

Impact of Weak Vibration Generated by a Refrigerator on Protein Aggregation.

AAPS J

January 2025

Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.

Protein aggregates and particles in biopharmaceuticals can induce adverse immune responses in patients. Thus, suppression of the formation of protein aggregates and particles is important for the successful development of therapeutic proteins. Mechanical stresses, including agitation, are widely recognized as stress factors that generate protein aggregates and particles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!