In this paper, a novel efficient learning algorithm towards self-generating fuzzy neural network (SGFNN) is proposed based on ellipsoidal basis function (EBF) and is functionally equivalent to a Takagi-Sugeno-Kang (TSK) fuzzy system. The proposed algorithm is simple and efficient and is able to generate a fuzzy neural network with high accuracy and compact structure. The structure learning algorithm of the proposed SGFNN combines criteria of fuzzy-rule generation with a pruning technology. The Kalman filter (KF) algorithm is used to adjust the consequent parameters of the SGFNN. The SGFNN is employed in a wide range of applications ranging from function approximation and nonlinear system identification to chaotic time-series prediction problem and real-world fuel consumption prediction problem. Simulation results and comparative studies with other algorithms demonstrate that a more compact architecture with high performance can be obtained by the proposed algorithm. In particular, this paper presents an adaptive modeling and control scheme for drug delivery system based on the proposed SGFNN. Simulation study demonstrates the ability of the proposed approach for estimating the drug's effect and regulating blood pressure at a prescribed level.

Download full-text PDF

Source
http://dx.doi.org/10.1142/S0129065712003067DOI Listing

Publication Analysis

Top Keywords

learning algorithm
12
fuzzy neural
12
neural network
12
novel efficient
8
efficient learning
8
algorithm self-generating
8
self-generating fuzzy
8
proposed algorithm
8
proposed sgfnn
8
prediction problem
8

Similar Publications

Developing a decision support tool to predict delayed discharge from hospitals using machine learning.

BMC Health Serv Res

January 2025

Department of Industrial Engineering, Dalhousie University, PO Box 15000, Halifax, B3H 4R2, NS, Canada.

Background: The growing demand for healthcare services challenges patient flow management in health systems. Alternative Level of Care (ALC) patients who no longer need acute care yet face discharge barriers contribute to prolonged stays and hospital overcrowding. Predicting these patients at admission allows for better resource planning, reducing bottlenecks, and improving flow.

View Article and Find Full Text PDF

Purpose: The study aimed to develop a deep learning model for rapid, automated measurement of full-spine X-rays in adolescents with Adolescent Idiopathic Scoliosis (AIS). A significant challenge in this field is the time-consuming nature of manual measurements and the inter-individual variability in these measurements. To address these challenges, we utilized RTMpose deep learning technology to automate the process.

View Article and Find Full Text PDF

UniAMP: enhancing AMP prediction using deep neural networks with inferred information of peptides.

BMC Bioinformatics

January 2025

College of Artificial Intelligence, Nanjing Agricultural University, Weigang No.1, Nanjing, 210095, Jiangsu, China.

Antimicrobial peptides (AMPs) have been widely recognized as a promising solution to combat antimicrobial resistance of microorganisms due to the increasing abuse of antibiotics in medicine and agriculture around the globe. In this study, we propose UniAMP, a systematic prediction framework for discovering AMPs. We observe that feature vectors used in various existing studies constructed from peptide information, such as sequence, composition, and structure, can be augmented and even replaced by information inferred by deep learning models.

View Article and Find Full Text PDF

Application of ChatGPT-assisted problem-based learning teaching method in clinical medical education.

BMC Med Educ

January 2025

Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, 410000, China.

Introduction: Artificial intelligence technology has a wide range of application prospects in the field of medical education. The aim of the study was to measure the effectiveness of ChatGPT-assisted problem-based learning (PBL) teaching for urology medical interns in comparison with traditional teaching.

Methods: A cohort of urology interns was randomly assigned to two groups; one underwent ChatGPT-assisted PBL teaching, while the other received traditional teaching over a period of two weeks.

View Article and Find Full Text PDF

A prediction study on the occurrence risk of heart disease in older hypertensive patients based on machine learning.

BMC Geriatr

January 2025

Department of Cardiology, The Second Hospital & Clinical Medical School, Lanzhou University, No. 82 Cuiyingmen, Lanzhou, 730000, China.

Objective: Constructing a predictive model for the occurrence of heart disease in elderly hypertensive individuals, aiming to provide early risk identification.

Methods: A total of 934 participants aged 60 and above from the China Health and Retirement Longitudinal Study with a 7-year follow-up (2011-2018) were included. Machine learning methods (logistic regression, XGBoost, DNN) were employed to build a model predicting heart disease risk in hypertensive patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!