Involvement of dysregulated autophagy in cancer growth and progression has been shown in different tumour entities, including pancreatic ductal adenocarcinoma (PDA). PDA is an extremely aggressive tumour characterized by a small population of highly therapy-resistant cancer stem cells (CSCs) capable of self-renewal and migration. We examined whether autophagy might be involved in the survival of CSCs despite nutrition and oxygen deprivation typical for the hypoxic tumour microenvironment of PDA. Immunohistochemistry revealed that markers for hypoxia, CSCs and autophagy are co-expressed in patient-derived tissue of PDA. Hypoxia starvation (H/S) enhanced clonogenic survival and migration of established pancreatic cancer cells with stem-like properties (CSC(high)), while pancreatic tumour cells with fewer stem cell markers (CSC(low)) did not survive these conditions. Electron microscopy revealed more advanced autophagic vesicles in CSC(high) cells, which exhibited higher expression of autophagy-related genes under normoxic conditions and relative to CSC(low) cells, as found by RT-PCR and western blot analysis. LC3 was already fully converted to the active LC3-II form in both cell lines, as evaluated by western blot and detection of accumulated GFP-LC3 protein by fluorescence microscopy. H/S increased formation of autophagic and acid vesicles, as well as expression of autophagy-related genes, to a higher extent in CSC(high) cells. Modulation of autophagy by inhibitors and activators resensitized CSC(high) to apoptosis and diminished clonogenicity, spheroid formation, expression of CSC-related genes, migratory activity and tumourigenicity in mice. Our data suggest that enhanced autophagy levels may enable survival of CSC(high) cells under H/S. Interference with autophagy-activating or -inhibiting drugs disturbs the fine-tuned physiological balance of enhanced autophagy in CSC and switches survival signalling to suicide.

Download full-text PDF

Source
http://dx.doi.org/10.1002/path.3994DOI Listing

Publication Analysis

Top Keywords

cschigh cells
12
cells
8
expression autophagy-related
8
autophagy-related genes
8
western blot
8
enhanced autophagy
8
autophagy
7
survival
5
cschigh
5
autophagy mediates
4

Similar Publications

MiR-146b-3p regulates proliferation of pancreatic cancer cells with stem cell-like properties by targeting MAP3K10.

J Cancer

May 2021

Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.

Cancer stem cells (CSCs) initiate and maintain tumorigenesis due to their unique pluripotency. However, pancreatic stem cell gene signatures are not completely revealed yet. Here, we isolated pancreatic cancer stem cells (P-CSCs) and exploited their distinct genome-wide mRNA and miRNA expression profiles using microarrays.

View Article and Find Full Text PDF

Snail contributes to the maintenance of stem cell-like phenotype cells in human pancreatic cancer.

PLoS One

October 2014

Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota, United States of America.

Snail, a potent repressor of E-cadherin expression, plays a key role in epithelial-to-mesenchymal transition (EMT) in epithelial cancer. Recently, EMT and stemness programs are found linked together. In the current study, the expression of Snail and its contribution to cancer stem cell (CSC) marker expression, invasiveness, self-renewal, clonogenicity, and tumorigenicity of pancreatic cancer cells were studied.

View Article and Find Full Text PDF

Tumor hypoxia induces epithelial-mesenchymal transition (EMT), which induces invasion and metastasis, and is linked to cancer stem cells (CSCs). Whether EMT generates CSCs de novo, enhances migration of existing CSCs or both is unclear. We examined patient tissue of pancreatic ductal adenocarcinoma (PDA) along with carcinomas of breast, lung, kidney, prostate and ovary.

View Article and Find Full Text PDF

Involvement of dysregulated autophagy in cancer growth and progression has been shown in different tumour entities, including pancreatic ductal adenocarcinoma (PDA). PDA is an extremely aggressive tumour characterized by a small population of highly therapy-resistant cancer stem cells (CSCs) capable of self-renewal and migration. We examined whether autophagy might be involved in the survival of CSCs despite nutrition and oxygen deprivation typical for the hypoxic tumour microenvironment of PDA.

View Article and Find Full Text PDF

Cancer stem cells (CSC) are predicted to be critical drivers of tumor progression due to their self-renewal capacity and limitless proliferative potential. An emerging area of research suggests that CSC may also support tumor progression by promoting tumor angiogenesis. To investigate how CSC contribute to tumor vascular development, we used an approach comparing tumor xenografts of the C6 glioma cell line containing either a low or a high fraction of CSC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!