Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Wear particle-induced osteolysis could lead to the aseptic loosening of implants. Studies have suggested that endotoxins, such as lipopolysaccharides (LPS), may be the primary causes of wear particle-mediated osteolysis, and that osteolysis may originate from subclinical levels of bacterial infection. However, effective therapies against wear particles and gram-negative bacterial or LPS-induced bone resorption are limited.
Materials And Methods: In the current study, the effect of berberine on LPS- and polyethylene (PE) particle-induced osteolysis in vivo was investigated using a mouse calvarial model. Osteoclast number per bone perimeter and eroded surface per bone surface were measured.
Results: Berberine (10 mg/kg), injected either simultaneously with LPS or 3 d after LPS (25 mg/kg) treatment, blocked LPS-induced osteoclast recruitment and bone resorption in the mouse calvarial model. A daily single-dose of berberine (10 mg/kg), injected either simultaneously with PE particles or 4 d after treatment with PE particles, blocked PE particle-induced osteoclast recruitment and bone resorption. Berberine treatment markedly decreased LPS and PE particle-induced osteoclast recruitment and bone resorption in the murine calvarial model.
Conclusion: These results suggest that berberine may have therapeutic effect for osteolysis induced by wear particles and LPS in gram-negative bacteria.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jss.2011.11.004 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!