EphA2 receptor activation by monomeric Ephrin-A1 on supported membranes.

Biophys J

Howard Hughes Medical Institute, Department of Chemistry, University of California, Berkeley, California, USA.

Published: December 2011

The receptor tyrosine kinase EphA2 interacts with its glycosylphosphatidylinositol (GPI)-linked ephrin-A1 ligand in a juxtacrine configuration. The soluble ephrin-A1 protein, without its GPI membrane linker, fails to activate EphA2. However, preclustered ephrin-A1 protein is active in solution and has been frequently used to trigger the EphA2 receptor. Although this approach has yielded insights into EphA2 signaling, preclustered ligands bypass natural receptor clustering processes and thus mask any role of clustering as a signal regulatory mechanism. Here, we present EphA2-expressing cells with a fusion protein of monomeric ephrin-A1 (mEA1) and enhanced monomeric yellow fluorescent protein that is linked to a supported lipid bilayer via a nickel-decahistidine anchor. The mEA1 is homogeneously dispersed, laterally mobile, and monomeric as measured by fluorescence imaging, correlation spectroscopy, and photon counting histogram analysis, respectively. Ephrin-A1 presented in this manner activates EphA2 on the surface of MDA-MB-231 human breast cancer cells, as measured by EphA2 phosphorylation and degradation. Spatial mutation experiments in which nanopatterns on the underlying substrate restrict mEA1 movement in the supported lipid bilayer reveal spatio-mechanical regulation of this signaling pathway, consistent with recently reported observations using a synthetically cross-linked ephrin-A1 dimer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3297811PMC
http://dx.doi.org/10.1016/j.bpj.2011.10.039DOI Listing

Publication Analysis

Top Keywords

epha2 receptor
8
monomeric ephrin-a1
8
ephrin-a1 protein
8
supported lipid
8
lipid bilayer
8
epha2
7
ephrin-a1
7
receptor activation
4
monomeric
4
activation monomeric
4

Similar Publications

Ephrin A1 functions as a ligand of EGFR to promote EMT and metastasis in gastric cancer.

EMBO J

January 2025

Department of Colorectal Surgery and Oncology and Department of Cell Biology, Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.

Distant metastasis is the major cause of gastric cancer mortality, and epidermal growth factor receptor (EGFR) activation plays critical roles in gastric cancer dissemination. However, EGFR targeting therapies in gastric cancer show only marginal effects, and the molecular mechanisms of oncogenic EGFR signaling remain poorly defined. Here, we report Ephrin A1 as a novel ligand of EGFR in gastric cancer.

View Article and Find Full Text PDF

The EphA2 transmembrane receptor is a key regulator of cellular growth, differentiation, and motility, and its overexpression in various cancers positions it as a promising biomarker for clinical cancer management. EphA2 signaling is mediated through ligand-induced dimerization, which stabilizes its dimeric state via conformational changes in the extracellular region and is linked to the intracellular kinase region via the transmembrane (TM) domain. Similar to many receptor tyrosine kinases, the juxtamembrane (JM) region, located between the TM and catalytic domains, coordinates with the TM domain to facilitate signal transduction.

View Article and Find Full Text PDF

Site-Specific Competitive Kinase Inhibitor Target Profiling Using Phosphonate Affinity Tags.

Mol Cell Proteomics

January 2025

Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, Utrecht 3584 CH, The Netherlands; Netherlands Proteomics Center, Padualaan 8, Utrecht 3584 CH, The Netherlands. Electronic address:

Protein kinases are prime targets for drug development due to their involvement in various cancers. However, selective inhibition of kinases, while avoiding off-target effects remains a significant challenge for the development of protein kinase inhibitors. Activity-based protein profiling (ABPP), in combination with pan-kinase activity-based probes (ABPs) and mass spectrometry-based proteomics, enables the identification of kinase drug targets.

View Article and Find Full Text PDF

Background: Endothelial dysfunction and inflammation have been implicated in the pathophysiology of cerebral small vessel disease (SVD). However, whether they are causal, and if so which components of the pathways represent potential treatment targets, remains uncertain.

Methods: Two-sample Mendelian randomization (MR) was used to test the association between the circulating abundance of 996 proteins involved in endothelial dysfunction and inflammation and SVD.

View Article and Find Full Text PDF

Cadmium (Cd) is a widely available metal that has been found to have a role in causing nonalcoholic fatty liver disease (NAFLD). However, the detailed toxicological targets and mechanisms by which Cd causes NAFLD are unknown. Therefore, the present work aims to reveal the main targets of action, cellular processes, and molecular pathways by which cadmium causes NAFLD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!