The polymorphism of eukaryotic cellular membranes is a tightly regulated and well-conserved phenotype. Recent data have revealed important regulatory roles of membrane curvature on the spatio-temporal localization of proteins and in membrane fusion. Here we quantified the influence of membrane curvature on the efficiency of intermembrane docking reactions. Using fluorescence microscopy, we monitored the docking of single vesicle-vesicle pairs of different diameter (30-200 nm) and therefore curvature, as mediated by neuronal soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) and streptavidin-biotin. Surprisingly, the intermembrane docking efficiency exhibited an ∼30-60 fold enhancement as a function of curvature. In comparison, synaptotagmin and calcium accelerate SNARE-mediated fusion in vitro by a factor of 2-10. To explain this finding, we formulated a biophysical model. On the basis of our findings, we propose that membrane curvature can regulate intermembrane tethering reactions and consequently any downstream process, including the fusion of vesicles and possibly viruses with their target membranes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3297791 | PMC |
http://dx.doi.org/10.1016/j.bpj.2011.09.059 | DOI Listing |
Biomech Model Mechanobiol
January 2025
Department of Mechanical and Aerospace Engineering, University of Houston, Houston, TX, 77204, USA.
The Gaussian modulus is a crucial property that influences topological transformations in lipid membranes. However, unlike the bending modulus, estimating the Gaussian modulus has been particularly challenging due to the constraints imposed by the Gauss-Bonnet theorem. Despite this, various theoretical, computational, and experimental approaches have been developed to estimate the Gaussian modulus, though they are often complex, and analytical estimates remain rare.
View Article and Find Full Text PDFJ Chem Phys
January 2025
Department of Physics and Materials Science, The University of Memphis, Memphis, Tennessee 38152, USA.
The adhesion of nanoparticles to lipid vesicles causes curvature deformations to the membrane to an extent determined by the competition between the adhesive interaction and the membrane's elasticity. These deformations can extend over length scales larger than the size of a nanoparticle, leading to an effective membrane-curvature-mediated interaction between nanoparticles. Nanoparticles with uniform surfaces tend to aggregate into unidimensionally close-packed clusters at moderate adhesion strengths and endocytose at high adhesion strengths.
View Article and Find Full Text PDFSoft Matter
January 2025
Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581, Japan.
Nonequilibrium membrane pattern formation is studied using meshless membrane simulation. We consider that molecules bind to either surface of a bilayer membrane and move to the opposite leaflet by flip-flop. When binding does not modify the membrane properties and the transfer rates among the three states are cyclically symmetric, the membrane exhibits spiral-wave and homogeneous-cycling modes at high and low binding rates, respectively, as in an off-lattice cyclic Potts model.
View Article and Find Full Text PDFAdv Mater
January 2025
School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, China.
Hydrogen evolution reaction (HER), as one of the most advanced methods for the green production of hydrogen, is greatly impeded by inefficient mass transfer. Here we present an efficiently reactant enriched and mass traffic system by integrating high-curvature Pt nanocones with 3D porous TiAl framework to enhance mass transfer rate. Theoretical simulations, in situ Raman spectroscopy and potential-dependent Fourier transform infrared spectroscopy results disclose that the strong local electric field induced by high-curvature Pt can greatly promote the HO supply rate during HER, resulting in ∼1.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390.
Neurotransmitter release is triggered in microseconds by Ca-binding to the Synaptotagmin-1 C-domains and by SNARE complexes that form four-helix bundles between synaptic vesicles and plasma membranes, but the coupling mechanism between Ca-sensing and membrane fusion is unknown. Release requires extension of SNARE helices into juxtamembrane linkers that precede transmembrane regions (linker zippering) and binding of the Synaptotagmin-1 CB domain to SNARE complexes through a "primary interface" comprising two regions (I and II). The Synaptotagmin-1 Ca-binding loops were believed to accelerate membrane fusion by inducing membrane curvature, perturbing lipid bilayers, or helping bridge the membranes, but SNARE complex binding through the primary interface orients the Ca-binding loops away from the fusion site, hindering these putative activities.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!