In vertebrate eyes, images are projected onto an inverted retina where light passes all retinal layers on its way to the photoreceptor cells. Light scattering within this tissue should impair vision. We show that radial glial (Müller) cells in the living retina minimize intraretinal light scatter and conserve the diameter of a beam that hits a single Müller cell endfoot. Thus, light arrives at individual photoreceptors with high intensity. This leads to an optimized signal/noise ratio, which increases visual sensitivity and contrast. Moreover, we show that the ratio between Müller cells and cones-responsible for acute vision-is roughly 1. This suggests that high spatiotemporal resolution may be achieved by each cone receiving its part of the image via its individual Müller cell-light guide.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3297812PMC
http://dx.doi.org/10.1016/j.bpj.2011.09.062DOI Listing

Publication Analysis

Top Keywords

müller cells
8
müller
5
light
5
müller glial
4
glial cell-provided
4
cell-provided cellular
4
cellular light
4
light guidance
4
guidance vital
4
vital guinea-pig
4

Similar Publications

Chronic inflammatory liver disease with an acute deterioration of liver function is named acute-on-chronic inflammation and could be regulated by the metabolic impairments related to the liver dysfunction. In this way, the experimental cholestasis model is excellent for studying metabolism in both types of inflammatory responses. Along the evolution of this model, the rats develop biliary fibrosis and an acute-on-chronic decompensation.

View Article and Find Full Text PDF

Portal hypertension is a common complication of liver disease, either acute or chronic. Consequently, in chronic liver disease, such as the hypertensive mesenteric venous pathology, the coexisting inflammatory response is classically characterized by the splanchnic blood circulation. However, a vascular lymphatic pathology is produced simultaneously with the splanchnic arterio-venous impairments.

View Article and Find Full Text PDF

Mast cell-mediated splanchnic cholestatic inflammation.

Clin Res Hepatol Gastroenterol

October 2019

Department of Surgery, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain. Electronic address:

Introduction: Splanchnic mast cells increase in chronic liver and in acute-on-chronic liver diseases. We administered Ketotifen, a mast cell stabilizer, and measured the mast cells in the splanchnic organs of cholestatic rats.

Material And Methods: These groups were studied: sham-operated rats (S; n = 15), untreated microsurgical cholestasic rats (C; n = 20) and rats treated with Ketotifen: early (SK-e; n = 20 and CKe; n = 18), and late (SK-l; n = 15 and CK-l; n = 14).

View Article and Find Full Text PDF

Carcinogenesis: the cancer cell-mast cell connection.

Inflamm Res

February 2019

Department of Surgery, School of Medicine, Complutense University of Madrid, Plaza de Ramón y Cajal s.n., 28040, Madrid, Spain.

Background: In mammals, inflammation is required for wound repair and tumorigenesis. However, the events that lead to inflammation, particularly in non-healing wounds and cancer, are only partly understood.

Findings: Mast cells, due to their great plasticity, could orchestrate the inflammatory responses inducing the expression of extraembryonic programs of normal and pathological tissue formation.

View Article and Find Full Text PDF

The gestational power of mast cells in the injured tissue.

Inflamm Res

February 2018

Department of Surgery, School of Medicine, Complutense University of Madrid, Plaza de Ramón y Cajal s.n., 28040, Madrid, Spain.

The inflammatory response expressed after wound healing would be the recapitulation of systemic extra-embryonic functions, which would focus on the interstitium of the injured tissue. In the injured tissue, mast cells, provided for a great functional heterogeneity, could play the leading role in the re-expression of extra-embryonic functions, i.e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!