Unlabelled: Nickel (Ni) is a potent sensitizer and may induce innate and adaptive immune responses. Ni is an important component of orthodontic appliances (8-50 wt%). Due to chemical and mechanical factors in the oral environment, Ni is released from these appliances. Retention wires are in situ for a long period of time.

Objectives: To quantitatively evaluate the influence of mechanical loading and pH on the nickel release from orthodontic retention wires.

Methods: Five different types of multi-stranded wires (Original Wildcat, Noninium, Lingual retainer, Dentaflex 3-s, Dentaflex 6-s), were submersed for 24 h in either 10 ml of distilled water or lactic acid, both submitted to cyclic loading in a 3-point bending test (0×, 1000×, 10,000×). The solutions were analyzed by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS), and the data was statistically analyzed (ANOVA, p<0.05).

Results: Mechanical loading has a strong effect on the Ni release from orthodontic retention wires, especially in distilled water. Acidity has more impact on Ni release when compared to mechanical loading. Manganese-steel "Ni-free" wires released quantifiable amounts of Ni due to trace elements of Ni within the wire.

Significance: All investigated wires release considerable amounts of Ni to which exposure may have biological implications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.dental.2011.12.009DOI Listing

Publication Analysis

Top Keywords

nickel release
8
release orthodontic
8
orthodontic retention
8
mechanical loading
8
retention wires-the
4
wires-the action
4
action mechanical
4
loading unlabelled
4
unlabelled nickel
4
nickel potent
4

Similar Publications

There is concern over potential toxic elements (PTEs) impacting river ecosystems due to human and industrial activities. The river's water, sediment, and aquatic life are all severely affected by the release of chemical and urban waste. PTE concentrations in sediment, water, and aquatic species from river ecosystems are reported in this review.

View Article and Find Full Text PDF

In China, a significant amount of coal fly ash is stored or used for landfill reclamation. The contaminants in coal fly ash (CFA) leachate can cause regional soil and groundwater contamination during long-term storage. This paper focuses on a coal gangue comprehensive utilisation power plant in Fenyang City, Shanxi Province, China, where the leaching characteristics of CFA were investigated by leaching tests.

View Article and Find Full Text PDF

Ultrahigh nickel cathode materials are widely utilized due to their outstanding energy and power densities. However, the presence of cobalt can cause significant lattice distortion during charge and discharge cycles, leading to the loss of active lithium, the formation of lattice cracks, and the emergence of a rock salt phase that hinders lithium-ion transport. Herein, we developed a novel cobalt-free, aluminum-doped cathode material, LiNiMnAlO (NMA), which effectively delays the harmful H2-H3 phase transition, reduces lattice distortion, alleviates stress release, and significantly enhances structural stability.

View Article and Find Full Text PDF

Rechargeable lithium-ion batteries (LIBs) are critical for enabling sustainable energy storage. The capacity of cathode materials is a major limiting factor in the LIB performance, and doping has emerged as an effective strategy for enhancing the electrochemical properties of nickel-rich layered oxides such as NCM811. In this study, boron is homogeneously incorporated into the tetrahedral site of NCM811 through co-precipitation, leading to an inductive effect on transition metal (TM)-O-B bonds that delayed structural collapse and reduced oxygen release.

View Article and Find Full Text PDF

L-histidine makes Ni 'visible' for plant signalling systems: Shading the light on Ni-induced Ca and redox signalling in plants.

Plant Physiol Biochem

October 2024

International Research Centre for Environmental Membrane Biology and Department of Horticulture, Foshan University, Foshan, China; V.F. Kuprevich Institute of Experimental Botany, National Academy of Sciences of Belarus, Minsk, Belarus. Electronic address:

Nickel is both an important nutrient and an ecotoxicant for plants. Organic ligands, such as L-histidine (His), play a key role in Ni detoxification. Here, we show that His (added together with 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!