The sensing potential of CuO nanoparticles synthesized via precipitation from a water/ionic liquid precursor (ILP) mixture was investigated. The particles have a moderate surface area of 66 m(2)/g after synthesis, which decreases upon thermal treatment to below 5 m(2)/g. Transmission electron microscopy confirms crystal growth upon annealing, likely due to sintering effects. The as-synthesized particles can be used for ethanol sensing. The respective sensors show fast response and recovery times of below 10 s and responses greater than 2.3 at 100 ppm of ethanol at 200 °C, which is higher than any CuO-based ethanol sensor described so far.

Download full-text PDF

Source
http://dx.doi.org/10.1021/am201427qDOI Listing

Publication Analysis

Top Keywords

cuo nanoparticles
8
liquid precursor
8
precursor ilp
8
ethanol sensing
8
nanoparticles hydrated
4
hydrated ionic
4
ionic liquid
4
ilp tetrabutylammonium
4
tetrabutylammonium hydroxide
4
hydroxide evaluation
4

Similar Publications

This work deals with the design of nanocomposite hydrogenation-dehydration bifunctional catalysts for the one-pot conversion of CO2 to dimethyl ether (DME), focusing on obtaining a high and homogeneous dispersion of a Cu-based CO2 hydrogenation phase into the pores of mesostructured supports. Particularly, three aluminosilicate mesostructured acid catalysts with catalytic activity towards methanol dehydration and featuring different porous structures (Al-MCM-41, Al-SBA-15, Al-SBA-16) were synthesized and used as supports to host a CuO/ZnO/ZrO2 (CZZ) CO2 hydrogenation catalyst for methanol synthesis. The use of a mesostructured support allows to maximize the exposed surface of the CO2 reduction function by nanostructuring it through its confinement within the mesochannels, thus obtaining nanocomposite bifunctional catalysts with an ultra-small hydrogenation nanophase.

View Article and Find Full Text PDF

Cuproptosis shows great prospects in cancer treatments. However, insufficient intracellular copper amount, low-level redox homeostasis, and hypoxic tumor microenvironment severely restrict cuproptosis efficacy. Herein, hydrazided hyaluronan-templated decorated CuO-doxorubicin (CuDT) nanodot clusters (NCs) are developed for efficient doxorubicin (DOX)-sensitized cuproptosis therapy in breast cancer via a three-pronged strategy.

View Article and Find Full Text PDF

Rational design of heterostructure (HS)-based surface acoustic wave (SAW) smart gas sensors for efficient and accurate subppm level ammonia (NH) detection at room temperature (RT) is of great significance in environmental protection and human safety. This study introduced a novel HS composed of an AlN-based SAW resonator and CuO nanoparticles (NPs) as a chemical interface for NH detection at RT (∼26 °C). The structural, morphological, and chemical compositions were detailly investigated, which demonstrates that the CuO/AlN HS was successfully formed via interfacial modulation.

View Article and Find Full Text PDF

Background: Recent advances in nanomedicine have derived novel prospects for development of various bioactive nanoparticles and nanocomposites with significant antibacterial and antifungal properties. This study aims to investigate some characteristics of the novel Se-NPs/CuO nanocomposite such as morphological, physicochemical, and optical properties, as well as to assess the antibacterial activity of this fabricated composite in different concentrations against some MDR Gram-positive and Gram-negative clinical bacterial isolates.

Methods: The Se-NPs/CuO nanocomposite was fabricated using the chemical deposition method.

View Article and Find Full Text PDF

Zinc (Zn)-based batteries have been persistently challenged by the critical issue of inhomogeneous zinc deposition/stripping process on substrate surface. Herein, we reveal that zinc electrodeposition behaviors dramatically improved through the introduction of highly zincophilic copper oxide nanoparticles (CuO NPs). Strong electronic redistribution between Zn and CuO explains the high Zn affinity on CuO, with negligible nucleation overpotential.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!