Objective: To study the effect of extracts of Cordyceps sinensis sporocarp on learning-memory in scopolamine treated mice and the possible mechanism.

Methods: ICR mice were randomly divided into five groups: sham control, model, piracetam and CSE 0.5, 1 g/kg. Lotomotor activity was assessed. Morris water maze was used to evaluate the memory ability of mice 30 min later after ip scopolamine 1.0 mg/kg BW. Then acitivity of AchE was measured after behavioral test.

Results: CSE had no influence on lotomotor activity. However, CSE 0.5, 1 g/kg both shortened escape latency and increased times of come-crossing platform in Morris water maze, meanwhile activity of AchE in the brain was decreased by CSE.

Conclusion: CSE can significantly improve the learning and memory impairment in mice induced by scopolamine, which may be correlated with the inhibition of activity of AchE.

Download full-text PDF

Source

Publication Analysis

Top Keywords

cordyceps sinensis
8
sinensis sporocarp
8
sporocarp learning-memory
8
cse g/kg
8
lotomotor activity
8
morris water
8
water maze
8
activity ache
8
[effect cordyceps
4
learning-memory mice]
4

Similar Publications

Moxifloxacin plus Cordyceps polysaccharide ameliorate intestinal barrier damage due to abdominal infection via anti-inflammation and immune regulation under simulated microgravity.

Life Sci Space Res (Amst)

February 2025

Department of General Surgery, the 306th Hospital of PLA-Peking University Teaching Hospital, Beijing 100101, PR China; Department of General Surgery, the Ninth Medical Center of PLA General Hospital, Beijing 100101, PR China. Electronic address:

Background: Currently, there is limited research on the impact of abdominal infection on intestinal damage under microgravity conditions. Cordyceps polysaccharide (CPS), the main active ingredient of Cordyceps, has demonstrated various pharmacological effects, including anti-inflammatory, antioxidant, and immunomodulatory properties. Moxifloxacin (MXF) is a fourth-generation quinolone antibiotic that is believed to have a dual regulatory effect on immune system activation and suppression.

View Article and Find Full Text PDF

Enhancing Cordyceps Sinensis shelf life: The role of liquid nitrogen spray freezing in maintaining hypha structure and reducing metabolic degradation.

Food Chem

January 2025

Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China. Electronic address:

Cordyceps sinensis (C. sinensis) is a valuable edible fungus, known for its therapeutic benefits, including immune enhancement and anti-inflammatory effects, making it an important component in nutritional applications. However, its delicate nature makes long-term storage challenging, with conventional freezing often leading to the loss of bioactive compounds.

View Article and Find Full Text PDF

Metabolomics and Transcriptomics Reveal the Effects of Different Fermentation Times on Antioxidant Activities of .

J Fungi (Basel)

January 2025

State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Science, Qinghai University, Xining 810016, China.

is a fungus that is cultured through fermentation from wild Chinese cordyceps. While studies have examined its metabolites, the evaluation of its antioxidant capacity remains to be conducted. The antioxidant results of indicate that the ferric ion-reducing antioxidant power (FRAP), antioxidant capacity (2.

View Article and Find Full Text PDF

Polysaccharides produced by the edible fungus can regulate blood sugar levels and may represent a suitable candidate for the treatment of diabetes and its complications. However, there is limited information available about the mechanism of how polysaccharide (CCP) might improve diabetic conditions. This study investigated its effects on the intestinal microbiota, intestinal mucosal barrier, and inflammation in mice with type 2 diabetes mellitus (T2DM) induced by streptozotocin, and its potential mechanisms.

View Article and Find Full Text PDF

is a medicinal mushroom widely utilized in traditional East Asian medicine, recognized for its diverse therapeutic properties. This review explores the potential of -derived bioactive gels for applications in dermatology and skincare, with a particular focus on their therapeutic and anti-aging benefits. In response to the rising incidence of skin cancers and the growing demand for natural bioactive ingredients, has emerged as a valuable source of functional compounds, including cordycepin, polysaccharides, and adenosine.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!