Fear learning is a crucial process in the pathogeneses of psychiatric disorders, which highlights the need to identify specific factors contributing to interindividual variation. We hypothesized variation in the serotonin transporter gene (5-HTTLPR) and stressful life events (SLEs) to be associated with neural correlates of fear conditioning in a sample of healthy male adults (n = 47). Subjects were exposed to a differential fear conditioning paradigm after being preselected regarding 5-HTTLPR genotype and SLEs. Individual differences in brain activity as measured by functional magnetic resonance imaging (fMRI), skin conductance responses and preference ratings were assessed. We report significant variation in neural correlates of fear conditioning as a function of 5-HTTLPR genotype. Specifically, the conditioned stimulus (CS(+)) elicited elevated activity within the fear-network (amygdala, insula, thalamus, occipital cortex) in subjects carrying two copies of the 5-HTTLPR S' allele. Moreover, our results revealed preliminary evidence for a significant gene-by-environment interaction, such as homozygous carriers of the 5-HTTLPR S' allele with a history of SLEs demonstrated elevated reactivity to the CS(+) in the occipital cortex and the insula. Our findings contribute to the current debate on 5-HTTLPR x SLEs interaction by investigating crucial alterations on an intermediate phenotype level which may convey an elevated vulnerability for the development of psychopathology.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3594727 | PMC |
http://dx.doi.org/10.1093/scan/nss005 | DOI Listing |
Sci Rep
January 2025
Laboratory of Pharmacology, Department of Pharmacy, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan.
Recently, exposure to sounds with ultrasound (US) components has been shown to modulate brain activity. However, the effects of US on emotional states remain poorly understood. We previously demonstrated that the olfactory bulbectomized (OBX) rat depression model is suitable for examining the effects of audible sounds on emotionality.
View Article and Find Full Text PDFBiomolecules
January 2025
Department of Surgery, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA.
Traumatic brain injury (TBI) is an inflammatory disease causing neurodegeneration. One of the consequences of inflammation is an elevated blood level of fibrinogen (Fg). Earlier we found that extravasated Fg induced an increased expression of neuronal nuclear factor kappa B (NF-κB) p65.
View Article and Find Full Text PDFBiomolecules
January 2025
Research and Education Resource Center, Peoples Friendship University of Russia (RUDN University), 117198 Moscow, Russia.
Post-translational modifications of proteins via palmitoylation, a thioester linkage of a 16-carbon fatty acid to a cysteine residue, reversibly increases their affinity for cholesterol-rich lipid rafts in membranes, changing their function. Little is known about how altered palmitoylation affects function at the systemic level and contributes to CNS pathology. However, recent studies suggested a role for the downregulation of palmitoyl acetyltransferase (DHHC) 21 gene expression in the development of Major Depressive Disorder (MDD)-like syndrome.
View Article and Find Full Text PDFPsychophysiology
January 2025
Department of Psychology, University of Bonn, Bonn, Germany.
Imaginal exposure is a standard procedure of cognitive behavioral therapy for the treatment of anxiety and panic disorders. It is often used when in vivo exposure is not possible, too stressful for patients, or would be too expensive. The Bio-Informational Theory implies that imaginal exposure is effective because of the perceptual proximity of mental imagery to real events, whereas empirical findings suggest that propositional thought of fear stimuli (i.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China.
The anterior cingulate cortex is responsible for multiple cognitive functions like fear, pain management, decision-making, risk and reward assessment, and memory consolidation. However, its cell-type-specific functions are not clearly understood. To reveal the selective functional role of Parvalbumin-expressing GABAergic interneurons in the ACC, we knocked down (KD) the PV gene in-vivo in rats.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!