Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Environmental models are often over-parameterized. A sensitivity analysis can identify influential model parameters for, e.g. the parameter estimation process, model development, research prioritization and so on. This paper presents the results of an extensive study of the Latin-Hypercube-One-factor-At-a-Time (LH-OAT) procedure applied to the Soil and Water Assessment Tool (SWAT). The LH-OAT is a sensitivity analysis method that can be categorized as a screening method. The results of the sensitivity analyses for all output variables indicate that the SWAT model of the river Kleine Nete is mainly sensitive to flow related parameters. Rarely, water quality parameters get a high priority ranking. It is observed that the number of intervals used for the Latin-Hypercube sampling should be sufficiently high to achieve converged parameter rankings. Additionally, it is noted that the LH-OAT method can enhance the understanding of the model, e.g. on the use of water quality input data.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2166/wst.2012.884 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!