Incorporation of N-acetylglucosamine into endogenous lipid and protein acceptors was investigated on heavy microsomes from rat liver, incubated with UDP-N-acetyl[14C]glucosamine and GDP-mannose in the absence of detergent. This subcellular preparation derived for 95% or more from the rough endoplasmic reticulum and was devoid of Golgi components which contain the enzyme that adds the peripheral N-acetylglucosamine units to glycoproteins. The label was found almost exclusively in dolichyl diphosphate N-acetylglucosamine, except when the subcellular preparation was treated with pyrophosphate and subsequently incubated with the nucleotide sugars in the presence of GTP. Then, the incorporation of N-acetylglucosamine was considerably enhanced, and the additional label was associated with dolichyl diphosphate N,N'-diacetylchitobiose, with dolichyl diphosphate oligosaccharides and with proteins. The time-course of N-acetylglucosamine incorporation in these products was compatible with the pathway of dolichyl diphosphate glycoconjugates for the biosynthesis of the core portion of saccharide chains linked to asparagine residues of glycoproteins. The addition of GDP-mannose to the incubation medium was required to produce labeled dolichyl diphosphate oligosaccharides, but not to incorporate N-acetylglucosamine in protein. It is concluded that rough microsomes are capable of assembling dolichol-linked oligosaccharides from exogenous nucleotide precursors and of transferring N,N'-diacetylchitobiose, or its mannosylated derivatives, from the lipid intermediate to endogenous proteins. However, these metabolic activities are hindered in the original subcellular preparation, and in the absence of GTP. Although the earliest perceptible effect produced jointly by the treatment with pyrophosphate and by GTP was the synthesis of dolichyl diphosphate N,N'-diacetylchitobiose, the primary action of these factors remains uncertain. They may stimulate directly the reaction forming dolichyl diphosphate N,N'-diacetylchitobiose from dolichyl diphosphate N-acetylglucosamine, or activate the synthesis of this latter intermediate from a particular pool of dolichyl monophosphate which is readily converted afterwards into disaccharide and oligosaccharide derivatives and glycosylates protein. The requirement for GTP might have a functional meaning, for GTP acted maximally at a concentration distinctly lower than its actual concentration in liver. The detachment of ribosomes from rough vesicles was the major alteration induced by treatment with pyrophosphate. It is suggested that the removal of ribosomes unmasks the membrane sites where GTP acts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1432-1033.1979.tb13008.x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!