In the past decade among the main developments in the field of bionanotechnology is the application of proteins in devices. Research focuses on the modification of enzyme systems by means of chemical and physical tools in order to achieve full control of their function and to employ them for specific tasks. Membrane protein channels are intriguing biological devices as they allow the recognition and passage of a variety of macromolecules through an otherwise impermeable lipid bilayer. Hence, membrane proteins can be used as sensory devices for detection or as molecular nanovalves to allow for the controlled release of molecules. Here, we discuss the structure and function of three different channel proteins that mediate the membrane passage of macromolecules using different mechanisms. These systems are described in a comparative manner and an overview is provided of the technological advances in employing these proteins in external (or human) controllable devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c2mb05433g | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!