Role of ubiquitin in parainfluenza virus 5 particle formation.

J Virol

Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA.

Published: April 2012

Ubiquitin is important for the budding of many retroviruses and other enveloped viruses, but the precise role of ubiquitin in virus budding remains unclear. Here, we characterized the ubiquitination of the matrix (M) protein of a paramyxovirus, parainfluenza virus 5 (PIV5). The PIV5 M protein (but not the PIV5 nucleocapsid protein) was found to be targeted for monoubiquitination in transfected mammalian cells. Major sites of ubiquitin attachment identified by mass spectrometry analysis were lysine residues at amino acid positions 79/80, 130, and 247. The cumulative mutation of lysine residues 79, 80, and 130 to arginines led to an altered pattern of M protein ubiquitination and impaired viruslike particle (VLP) production. However, the cumulative mutation of lysine residues 79, 80, 130, and 247 to arginines restored M protein ubiquitination and VLP production, suggesting that ubiquitin is attached to alternative sites on the M protein when the primary ones have been removed. Additional lysine residues were targeted for mutagenesis based on the UbiPred algorithm. An M protein with seven lysine residues changed to arginines exhibited altered ubiquitination and poor VLP production. A recombinant virus encoding an M protein with seven lysines mutated was generated, and this virus exhibited a 6-fold-reduced maximum titer, with the defect being attributed mainly to the budding of noninfectious particles. The recombinant virus was assembly deficient, as judged by the redistribution of viral M and hemagglutinin-neuraminidase proteins in infected cells. Similar assembly defects were observed for the wild-type (wt) virus after treatment with a proteasome inhibitor. Collectively, these findings suggest that the monoubiquitination of the PIV5 M protein is important for proper virus assembly and for the budding of infectious particles.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3302527PMC
http://dx.doi.org/10.1128/JVI.06021-11DOI Listing

Publication Analysis

Top Keywords

lysine residues
20
vlp production
12
protein
9
role ubiquitin
8
virus
8
parainfluenza virus
8
piv5 protein
8
130 247
8
cumulative mutation
8
mutation lysine
8

Similar Publications

In recent years, it was found that lysine malonylation modification can affect biological metabolism and play an important role in plant life activities. Platycodon grandiflorus, an economic crop and medicinal plant, had no reports on malonylation in the related literature. This study qualitatively introduces lysine malonylation in P.

View Article and Find Full Text PDF

The use of proteins as intracellular probes and therapeutic tools is often limited by poor intracellular delivery. One approach to enabling intracellular protein delivery is to transform proteins into spherical nucleic acid (proSNA) nanoconstructs, with surfaces chemically modified with a dense shell of radially oriented DNA that can engage with cell-surface receptors that facilitate endocytosis. However, proteins often have a limited number of available reactive surface residues for DNA conjugation such that the extent of DNA loading and cellular uptake is restricted.

View Article and Find Full Text PDF

Many protein bioconjugation strategies focus on the modification of lysine residues owing to the nucleophilicity of their amine side-chain, the generally high abundance of lysine residues on a protein's surface and the ability to form robustly stable amide-based bioconjugates. However, the plethora of solvent accessible lysine residues, which often have similar reactivity, is a key inherent issue when searching for regioselectivity and/or controlled loading of an entity. A relevant example is the modification of antibodies and/or antibody fragments, whose conjugates offer potential for a wide variety of applications.

View Article and Find Full Text PDF

In human eye, structural proteins, known as crystallins, play a crucial role in maintaining the eye's refractive index. These crystallins constitute majority of the total soluble proteins found in the eye lens. Among them, α-crystallins (α-CR) is one of the major components.

View Article and Find Full Text PDF

A novel strategy for cytochrome c selective recognition assisted with cucurbit[6]uril by host-guest interaction via N-terminal epitope imprinting and reversible addition-fragmentation chain transfer (RAFT) polymerization was developed. N-terminal nonapeptide of cytochrome c (GI-9) was used as the epitope template to achieve highly selective recognition of cytochrome c. As a common supramolecule in recent years, cucurbit[6]uril can encapsulate the butyrammonium group of lysine residue to capture the peptide and improve the corresponding spatial orientation by the host-guest interaction for GI-9 or cytochrome c recognition.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!