Fabrication of three-dimensional (3D) fibrin scaffolds with tightly controllable pore sizes and interconnections has been investigated. The scaffolds were produced using a combination of two-photon polymerization (2PP) and micromolding techniques. Master structures were fabricated by 2PP and regenerated in fibrin by a two-step microreplication procedure. Scanning electron and optical microscopy observations showed that the fibrin scaffolds exhibited a highly porous and interconnected structure. Seeding of endothelial cells in fibrin scaffolds resulted in their directed lining and spreading within network of microreplicated pores, whereas encapsulation of endothelial cells in fibrin gel blocks led to their chaotic and irregular distribution within constructs. These results demonstrate that the 2PP-micromolding technique is suitable for fabrication of complex 3D structures from natural proteins for tissue engineering applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1758-5082/4/1/015001 | DOI Listing |
Regen Med
January 2025
Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain.
Aims: Human periodontal ligament stem cells (hPDLSCs) exhibit an enormous potential to regenerate periodontal tissue. However, their translatability to the clinical setting is constrained by technical difficulties in standardizing culture conditions. The aim was to assess complex culture conditions using a proteomic-based protocol to standardize multi-layer hPDLSC cultivation methodology.
View Article and Find Full Text PDFTissue Cell
December 2024
Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
Traumatic spinal cord injury (TSCI) is a serious medical issue where there is a loss of sensorimotor function. Current interventions continue to lack the ability to successfully enhance these conditions, therefore, it is crucial to consider alternative effective strategies. Currently, we investigated the effects of fibrin scaffold encapsulated with epigallocatechin gallate (EGCG) microspheres in the recovery of SCI in rats.
View Article and Find Full Text PDFJ Cell Physiol
December 2024
Dental Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
Incorporating autologous patient-derived products has become imperative to enhance the continually improving outcomes in bone tissue engineering. With this objective in mind, this study aimed to evaluate the osteogenic potential of 3D-printed allograft-alginate-gelatin scaffolds coated with stromal vascular fraction (SVF) and platelet-rich fibrin (PRF). The primary goal was to develop a tissue-engineered construct capable of facilitating efficient bone regeneration through the utilization of biomaterials with advantageous properties and patient-derived products.
View Article and Find Full Text PDFClin Adv Periodontics
December 2024
Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA.
Background: In soft tissue regeneration, the clinical efficacy of fibrin membranes has been a pressing concern. The key to this efficacy lies in the stability of membrane and its controlled absorption. Human serum albumin, with its influence on the formation and stability of fibrin networks, could hold the key to developing a more stable alternative.
View Article and Find Full Text PDFStem Cells Dev
December 2024
Cell Therapy Service, Banc de Sang i Teixits (BST), Passeig Taulat 116, 08005, Barcelona, Spain.
In adults, the limbal stem cells (LSC) reside in the limbal region of the eye, at the junction of the cornea and the sclera where they renew the outer epithelial layer of the cornea assuring transparency. LSC deficiencies (LSCD) due to disease or injury account for one of the major causes of blindness. Among current treatments for LSCD, cornea transparency can be restored by providing new LSC to the damaged eye and induced pluripotent stem cells (iPSC) holds great promise as a new advanced cell source.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!