The initial hydrogenations of pyridine on MoP(001) with various hydrogen species are studied using self-consistent periodic density functional theory (DFT). The possible surface hydrogen species are examined by studying interaction of H(2) and H(2)S with the surface, and the results suggest that the rational hydrogen source for pyridine hydrogenations should be surface hydrogen atoms, followed by adsorbed H(2)S and SH. On MoP(001), pyridine has two types of adsorption modes, i.e., side-on and end-on; and the most stable η(5)(N,C(α),C(β),C(β),C(α)) configuration of the side-on mode facilitates the hydrogenation of pyridine. The optimal hydrogenation path of pyridine with surface hydrogen atoms in the Langmuir-Hinshelwood mechanism is the formation of 3-monohydropyridine, followed by producing 3,5-dihydropyridine, in which the two-step hydrogenations take place on the C(β) atoms. When adsorbed H(2)S is considered as the source of hydrogen, slightly higher hydrogenation barriers are always involved, while the energy barriers for hydrogenations involving adsorbed SH are much lower. However, the hydrogenation of pyridine should be suppressed by the adsorption of H(2)S, and the promotion effect of adsorbed SH is limited.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la2051004DOI Listing

Publication Analysis

Top Keywords

surface hydrogen
12
initial hydrogenations
8
hydrogenations pyridine
8
pyridine mop001
8
density functional
8
hydrogen species
8
hydrogen atoms
8
atoms adsorbed
8
adsorbed h2s
8
hydrogenation pyridine
8

Similar Publications

Catalyst-Free Nitrogen Fixation by Microdroplets through a Radical-Mediated Disproportionation Mechanism under Ambient Conditions.

J Am Chem Soc

January 2025

State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China.

Nitrogen fixation is essential for the sustainable development of both human society and the environment. Due to the chemical inertness of the N≡N bond, the traditional Haber-Bosch process operates under extreme conditions, making nitrogen fixation under ambient conditions highly desirable but challenging. In this study, we present an ultrasonic atomizing microdroplet method that achieves nitrogen fixation using water and air under ambient conditions in a rationally designed sealed device, without the need for any catalyst.

View Article and Find Full Text PDF

Background: Soy protein isolate (SPI) has poor emulsifying ability because of its low molecular flexibility and compact structure, limiting its application in extruded protein-based foods. Extrusion technology has emerged as a promising way to alter the structural properties of proteins. Therefore, the impacts of grape seed proanthocyanidin (GSP) on structural and emulsifying characteristics of SPI in extrusion field were explored in this study.

View Article and Find Full Text PDF

Deciphering the Complexity of Step Profiles on Vicinal Si(001) Surfaces Through Multiscale Simulations.

Small

January 2025

State Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China.

The behavior of vicinal Si(001) surfaces are a subject of intense research for years, yet the mechanism behind its step modulation remains unresolved. Step B, in particular, can meander randomly or form a periodic zigzag profile, a surface phenomenon that has eluded explanation due to the lack of appropriate simulation tools. Here, a multiscale simulation strategy, enhanced by machine learning potentials are proposed, to investigate this mesoscale behavior.

View Article and Find Full Text PDF

Gold-Mercury-Platinum Alloy for Light-Enhanced Electrochemical Detection of Hydrogen Peroxide.

Sensors (Basel)

December 2024

Center for Experimental Chemistry Education of Shandong University, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.

In this study, a simple and easy synthesis strategy to realize the modification of AuHgPt nanoalloy materials on the surface of ITO glass at room temperature is presented. Gold nanoparticles as templates were obtained by electrochemical deposition, mercury was introduced as an intermediate to form an amalgam, and then a galvanic replacement reaction was utilized to successfully prepare gold-mercury-platinum (AuHgPt) nanoalloys. The obtained alloys were characterized by scanning electron microscopy, UV-Vis spectroscopy, X-ray photoelectron spectroscopy and X-ray diffraction techniques.

View Article and Find Full Text PDF

The effect of solution pH on the formation and surface structure of 2-pyrazinethiolate (2-PyzS) self-assembled monolayers (SAMs) formed by the adsorption of 2-mercaptopyrazine (2-PyzSH) on Au(111) was investigated using scanning tunneling microscopy (STM) and X-ray photoelectron microscopy (XPS). Molecular-scale STM observations clearly revealed that 2-PyzS SAMs at pH 2 had a short-range ordered phase of (2√3 × √21)R30° structure with a standing-up adsorption structure. However, 2-PyzS SAMs at pH 8 had a very unique long-range ordered phase, showing a "ladder-like molecular arrangement" with bright repeating rows.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!