Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The present study investigated the effects of dietary sodium on bone growth in young rats. Five-week-old rats were fed one of three different diets for 60 days: low sodium (NaCl, 0.32 g/kg diet), normal sodium (NaCl, 2.6 g/kg) and high sodium (NaCl, 20 g/kg). The proximal tibial metaphysis (PTM), the fifth lumbar vertebra (LV5) and the middle part of the tibia shaft (TX) were analysed by bone histomorphometry. The expression of three osteogenesis genes, Runx2, osteopontin and osteocalcin, was determined by RT-PCR in bone samples from the skull. In both the PTM and LV5, trabecular area and thickness were increased by the low-sodium diet, while the high-sodium diet decreased trabecular area in LV5. Dynamic data revealed that sodium restriction increased bone formation parameters in the PTM and LV5, but decreased bone resorption in LV5. In TX, endosteal bone formation was enhanced by the low-sodium diet and depressed by the high-sodium diet compared to the normal sodium group. But there were no statistically changes in the cortical bone area of TX. Low-sodium intake significantly enhanced the expression of all three osteogenesis genes compared to the normal sodium group, while high-sodium intake suppressed osteogenic gene expression. Our results suggest that sodium restriction in growing rats promotes bone development by influencing both bone formation and resorption.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/1745039x.2011.629805 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!