Microscopic images of tissue sections are used for diagnosis and monitoring of therapy, by analysis of protein patterns correlating to disease states. Spatial protein distribution is influenced by protein translocation between different membrane compartments and quantified by comparison of microscopic images of biological samples. Cholestatic liver diseases are characterized by translocation of transport proteins, and quantification of their dislocation offers new diagnostic options. However, reliable and unbiased tools are lacking. The nowadays used manual method is slow, subjective and error-prone. We have developed a new workflow based on automated image analysis and improved it by the introduction of scale-free descriptors for the translocation quantification. This fast and unbiased method can substitute the manual analysis, and the suggested descriptors perform better than the earlier used statistical variance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/IEMBS.2011.6091627 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!