Bioengineering education @ NUS: a design-centered curriculum.

Annu Int Conf IEEE Eng Med Biol Soc

Division of Bioengineering, National University of Singapore 9 Engineering Drive 1, Block EA, #03-12, Singapore 117575.

Published: August 2012

In resonance with the NUS Mission, the aim of the Bioengineering undergraduate degree program is to produce engineers with a strong foundation in the relevant engineering, sciences and technology, who are able to contribute to the biomedical sciences through innovation, enterprise and leadership. Our educational program in Bioengineering is characterised by a strong emphasis on scientific and engineering fundamentals and a high degree of flexibility which can provide a wide diversity of educational experiences. By providing graduates with a combination of broad-based fundamentals and specialized knowledge, the Bioengineering program strives to graduate versatile engineers who would be best positioned to lead and be an integral part of the Bioengineering industries in the future. This paper describes the bioengineering program, both at undergraduate and postgraduate levels in the Division of Bioengineering at Faculty of Engineering in National University of Singapore.

Download full-text PDF

Source
http://dx.doi.org/10.1109/IEMBS.2011.6091611DOI Listing

Publication Analysis

Top Keywords

bioengineering program
8
bioengineering
7
bioengineering education
4
education nus
4
nus design-centered
4
design-centered curriculum
4
curriculum resonance
4
resonance nus
4
nus mission
4
mission aim
4

Similar Publications

Background: Radiotherapy is the primary treatment modality for most head and neck cancers (HNCs). Despite the addition of chemotherapy to radiotherapy to enhance its tumoricidal effects, almost a third of HNC patients suffer from locoregional relapses. Salvage therapy options for such recurrences are limited and often suboptimal, partly owing to divergent tumor and microenvironmental factors underpinning radioresistance.

View Article and Find Full Text PDF

Regenerative properties of bone marrow mesenchymal stem cell derived exosomes in rotator cuff tears.

J Transl Med

January 2025

Department of Joint Surgery, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China.

Rotator cuff injury (RCI), characterized by shoulder pain and restricted mobility, represents a subset of tendon-bone insertion injuries (TBI). In the majority of cases, surgical reconstruction of the affected tendons or ligaments is required to address the damage. However, numerous clinical failures have underscored the suboptimal outcomes associated with such procedures.

View Article and Find Full Text PDF

FAP-targeted radioligand therapy with Ga/Lu-DOTA-2P(FAPI) enhance immunogenicity and synergize with PD-L1 inhibitors for improved antitumor efficacy.

J Immunother Cancer

January 2025

Department of Nuclear Medicine and Minnan PET Center, Xiamen Cancer Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China

Background: Fibroblast activation protein (FAP)-targeted radioligand therapy, with immunomodulatory effects, has shown efficacy in both preclinical and clinical studies. We recently reported on a novel dimeric FAP-targeting radiopharmaceutical, Ga/Lu-DOTA-2P(FAPI), which demonstrated increased tumor uptake and prolonged retention in various cancers. However, further exploration is required to understand the therapeutic efficacy and underlying mechanisms of combining Ga/Lu-DOTA-2P(FAPI) radioligand therapy with PD-1/PD-L1 immunotherapy.

View Article and Find Full Text PDF

Reversible light-responsive protein hydrogel for on-demand cell encapsulation and release.

Acta Biomater

January 2025

Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, TX, 78712, USA. Electronic address:

The design of biomaterials that can reconfigure on-demand in response to external stimuli is an emerging area in materials research. However, achieving reversible assembly of protein-based biomaterials by light input remains a major challenge. Here, we present the engineering of a new protein material that is capable of switching between liquid and solid state reversibly, controlled by lights of different wavelengths.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!