A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Continuous movement decoding using a target-dependent model with EMG inputs. | LitMetric

Continuous movement decoding using a target-dependent model with EMG inputs.

Annu Int Conf IEEE Eng Med Biol Soc

Departments of Biomedical Engineering and Physiology, Northwestern University, Evanston, IL 60208, USA.

Published: June 2012

Trajectory-based models that incorporate target position information have been shown to accurately decode reaching movements from bio-control signals, such as muscle (EMG) and cortical activity (neural spikes). One major hurdle in implementing such models for neuroprosthetic control is that they are inherently designed to decode single reaches from a position of origin to a specific target. Gaze direction can be used to identify appropriate targets, however information regarding movement intent is needed to determine when a reach is meant to begin and when it has been completed. We used linear discriminant analysis to classify limb states into movement classes based on recorded EMG from a sparse set of shoulder muscles. We then used the detected state transitions to update target information in a mixture of Kalman filters that incorporated target position explicitly in the state, and used EMG activity to decode arm movements. Updating the target position initiated movement along new trajectories, allowing a sequence of appropriately timed single reaches to be decoded in series and enabling highly accurate continuous control.

Download full-text PDF

Source
http://dx.doi.org/10.1109/IEMBS.2011.6091343DOI Listing

Publication Analysis

Top Keywords

target position
12
single reaches
8
target
5
continuous movement
4
movement decoding
4
decoding target-dependent
4
target-dependent model
4
emg
4
model emg
4
emg inputs
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!