There has been a surge of research on electrocardiogram (ECG) signal based biometric for person identification. Though most of the existing studies claimed that ECG signal is unique to an individual and can be a viable biometric, one of the main difficulties for real-world applications of ECG biometric is the accuracy performance. To address this problem, this study proposes a PLR-DTW method for ECG biometric, where the Piecewise Linear Representation (PLR) is used to keep important information of an ECG signal segment while reduce the data dimension at the same time if necessary, and the Dynamic Time Warping (DTW) is used for similarity measures between two signal segments. The performance evaluation was carried out on three ECG databases, and the existing method using wavelet coefficients, which was proved to have good accuracy performance, was selected for comparison. The analysis results show that the PLR-DTW method achieves an accuracy rate of 100% for identification, while the one using wavelet coefficients achieved only around 93%.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/IEMBS.2011.6091298 | DOI Listing |
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi
October 2013
School of Control Science and Engineering, Shandong University, Jinan 250061, China.
To treat the problem of identification performance and the complexity of the algorithm, we proposed a piecewise linear representation and dynamic time warping (PLR-DTW) method for ECG biometric identification. Firstly we detected R peaks to get the heartbeats after denoising preprocessing. Then we used the PLR method to keep important information of an ECG signal segment while reducing the data dimension at the same time.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
June 2012
Department of Control Science and Engineering, Institute of Biomedical and Health Engineering, Chinese Academy of Sciences, Shandong University, China.
There has been a surge of research on electrocardiogram (ECG) signal based biometric for person identification. Though most of the existing studies claimed that ECG signal is unique to an individual and can be a viable biometric, one of the main difficulties for real-world applications of ECG biometric is the accuracy performance. To address this problem, this study proposes a PLR-DTW method for ECG biometric, where the Piecewise Linear Representation (PLR) is used to keep important information of an ECG signal segment while reduce the data dimension at the same time if necessary, and the Dynamic Time Warping (DTW) is used for similarity measures between two signal segments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!