The goal of presented work was to compare the usage of standard basic wave let function like e.g. bio-orthogonal or dbn with the optimized wavelet created to the best match analyzing ECG signals in the context of P-wave and atrial fibrillation detection. A library of clinical expert evaluated typical atrial fibrillation evolutions was created as a database for optimal matched wavelet construction. Whole data set consisting of 40 cases with long term ECG recording s were divided into learning and verifying set for the multilayer perceptron neural network used as a classifier structure. Compared with other wavelet filters, the matched wavelet was able to improve classifier performance for a given ECG signals in terms of the Sensitivity and Specificity measures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/IEMBS.2011.6091238 | DOI Listing |
BMC Cardiovasc Disord
January 2025
ITACA Institute, Universitat Politècnica de València, València, Spain.
Background: Complexity and signal recurrence metrics obtained from body surface potential mapping (BSPM) allow quantifying atrial fibrillation (AF) substrate complexity. This study aims to correlate electrocardiographic imaging (ECGI) detected reentrant patterns with BSPM-calculated signal complexity and recurrence metrics.
Methods: BSPM signals were recorded from 28 AF patients (17 male, 11 women, 62.
Microsyst Nanoeng
January 2025
Key Laboratory of Instrumentation Science and Dynamic Measurement Ministry of Education, North University of China, 030051, Taiyuan, China.
The alarming prevalence and mortality rates associated with cardiovascular diseases have emphasized the urgency for innovative detection solutions. Traditional methods, often costly, bulky, and prone to subjectivity, fall short of meeting the need for daily monitoring. Digital and portable wearable monitoring devices have emerged as a promising research frontier.
View Article and Find Full Text PDFArtif Intell Med
January 2025
Department of Cardiovascular Ultrasound, The First Hospital of China Medical University, China; Clinical Medical Research Center of Imaging in Liaoning Province, Shenyang, China.
Left ventricular systolic dysfunction (LVSD) and its severity are correlated with the prognosis of cardiovascular diseases. Early detection and monitoring of LVSD are of utmost importance. Left ventricular ejection fraction (LVEF) is an essential indicator for evaluating left ventricular function in clinical practice, the current echocardiography-based evaluation method is not avaliable in primary care and difficult to achieve real-time monitoring capabilities for cardiac dysfunction.
View Article and Find Full Text PDFBiomed Phys Eng Express
January 2025
Electronics and Communication Engineering, Rajiv Gandhi University, Rono Hills, Doimukh, ITANAGAR, Itanagar, Arunachal Pradesh, 791112, INDIA.
Accurate detection of cardiac arrhythmias is crucial for preventing premature deaths. The current study employs a dual-stage Discrete Wavelet Transform (DWT) and a median filter to eliminate noise from ECG signals. Subsequently, ECG signals are segmented, and QRS regions are extracted for further preprocessing.
View Article and Find Full Text PDFNat Sci Sleep
January 2025
Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China.
Purpose: To develop a deep learning (DL) model for obstructive sleep apnea (OSA) detection and severity assessment and provide a new approach for convenient, economical, and accurate disease detection.
Methods: Considering medical reliability and acquisition simplicity, we used electrocardiogram (ECG) and oxygen saturation (SpO) signals to develop a multimodal signal fusion multiscale Transformer model for OSA detection and severity assessment. The proposed model comprises signal preprocessing, feature extraction, cross-modal interaction, and classification modules.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!