Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The quality of automated real-time critical care monitoring is impacted by the degree of signal artifact present in clinical data. This is further complicated when different clinical rules applied for disease detection require source data at different frequencies and different signal quality. This paper proposes a novel multidimensional framework based on service oriented architecture to support real-time implementation of clinical artifact detection in critical care settings. The framework is instantiated through a Neonatal Intensive Care case study which assesses signal quality of physiological data streams prior to detection of late-onset neonatal sepsis. In this case study requirements and provisions of artifact and clinical event detection are determined for real-time clinical implementation, which forms the second important contribution of this paper.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/IEMBS.2011.6091221 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!