Design of a novel digital phantom for EIT system calibration.

Annu Int Conf IEEE Eng Med Biol Soc

School of Electronic Science and Engineering, National University of Defense Technology, 410073 Changsha, China.

Published: July 2012

This paper presented the design method of a novel digital phantom for electrical impedance tomography system calibration. By current sensing, voltage generating circuitry and digital processing algorithms implemented in FPGA, the digital phantom can simulate different impedances of tissues. The hardware of the digital phantom mainly consists of current sensing section, voltage generating section, electrodes switching section and a FPGA. Concerning software, the CORDIC algorithm is implemented in the FPGA to realize direct digital synthesis (DDS) technique and related algorithms. Simulation results show that the suggested system exhibits sufficient accuracy in the frequency range 10 Hz to 2 MHz. With the advantages offered by digital techniques, our approach has the potential of speed, accuracy and flexibility of the EIT system calibration process.

Download full-text PDF

Source
http://dx.doi.org/10.1109/IEMBS.2011.6091189DOI Listing

Publication Analysis

Top Keywords

digital phantom
16
system calibration
12
novel digital
8
eit system
8
current sensing
8
sensing voltage
8
voltage generating
8
implemented fpga
8
digital
7
design novel
4

Similar Publications

Photon-counting mammography is an emerging modality that allows for spectral imaging and provides a differentiation of material compositions. The development of photon-counting mammography-specific contrast agents has yet to be explored. In this study, the contrast, sensitivity, and organ dose between silver sulfide nanoparticles (AgS-NPs) and a clinically approved iodinated agent (iopamidol) were investigated using a contrast-embedded gradient ramp phantom and a prototype scanner.

View Article and Find Full Text PDF

Deformable image registration (DIR) is an enabling technology in many diagnostic and therapeutic tasks. Despite this, DIR algorithms have limited clinical use, largely due to a lack of benchmark datasets for quality assurance during development. To support future algorithm development, here we introduce our first-of-its-kind abdominal CT DIR benchmark dataset, comprising large numbers of highly accurate landmark pairs on matching blood vessel bifurcations.

View Article and Find Full Text PDF

Background: K-edge subtraction (KES) imaging is a dual-energy imaging technique that enhances contrast by subtracting images taken with x-rays that are above and below the K-edge energy of a specified contrast agent. The resulting reconstruction spatially identifies where the contrast agent accumulates, even when obscured by complex and heterogeneous distributions of human tissue. This method is most successful when x-ray sources are quasimonoenergetic and tunable, conditions that have traditionally only been met at synchrotrons.

View Article and Find Full Text PDF

Programmable scanning diffuse speckle contrast imaging of cerebral blood flow.

Neurophotonics

January 2025

University of Kentucky, Department of Biomedical Engineering, Lexington, Kentucky, United States.

Significance: Cerebral blood flow (CBF) imaging is crucial for diagnosing cerebrovascular diseases. However, existing large neuroimaging techniques with high cost, low sampling rate, and poor mobility make them unsuitable for continuous and longitudinal CBF monitoring at the bedside.

Aim: We aimed to develop a low-cost, portable, programmable scanning diffuse speckle contrast imaging (PS-DSCI) technology for fast, high-density, and depth-sensitive imaging of CBF in rodents.

View Article and Find Full Text PDF

Background: X-ray grating-based dark-field imaging can sense the small angle scattering caused by object's micro-structures. This technique is sensitive to the porous microstructure of lung alveoli and has the potential to detect lung diseases at an early stage. Up to now, a human-scale dark-field CT (DF-CT) prototype has been built for lung imaging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!