We have shown that the slow eye movements extracted from electrooculogram (EOG) signals can be used to estimate human vigilance in our previous work. However, the traditional method for recording EOG signals is to place the electrodes near the eyes of subjects. This placement is inconvenient for users in real-world applications. This paper aims to find a more practical placement for acquiring EOG signals for vigilance estimation. Instead of placing the electrodes near the eyes, we place them on the forehead. We extract EOG features from the forehead EOG signals using both independent component analysis and support vector machines. The performance of our proposed method is evaluated using the correlation coefficients between the forehead EOG signals and the traditional EOG signals. The results show that a correlation of 0.84 can be obtained when the users make 14 different face movements and for merely eye movements it reaches 0.93.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/IEMBS.2011.6090840 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!