DEEP brain stimulation implants have improved life quality for more than 70,000 patients world-wide with diseases like Parkinson's, essential tremor, or obsessive-compulsive disorder where pharmaceutical therapies alone could not offer sufficient relief. Still, optimization and monitoring relies heavily on regular clinical visits, putting a burden on patient's comfort and clinicians. Permanent monitoring and combination with other patient health signals could ultimately lead to a personalized closed-loop therapy with remote quality monitoring. This requires technological improvements on the DBS implants such as integration of recording capabilities for brain activity monitoring, active low-power electronics, rechargeable battery technology, and body sensor networks for integration with e.g. gait, speech, and other vital information sensors on the patient's body and a link to a telemedicine platform using mobile technologies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/IEMBS.2011.6090453 | DOI Listing |
Geroscience
January 2025
Department of Neurology, Ewha Womans University Mokdong Hospital, Ewha Womans University College of Medicine, Seoul, Republic of Korea.
Background: Superagers, older adults with exceptional cognitive abilities, show preserved brain structure compared to typical older adults. We investigated whether superagers have biologically younger brains based on their structural integrity.
Methods: A cohort of 153 older adults (aged 61-93) was recruited, with 63 classified as superagers based on superior episodic memory and 90 as typical older adults, of whom 64 were followed up after two years.
Acta Neurochir (Wien)
January 2025
Department of Neurosurgery and Department of Neuroscience, Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen Key Laboratory of Brain Center, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China.
Purpose: To investigate the technique for dorsal median sulcus (DMS) mapping and assess its application value in preserving dorsal columnn (DC) function during intramedullary space occupying surgery based on a single-center experience.
Methods: A retrospective analysis was conducted on 41 cases of intramedullary spinal cord tumor admitted to the Department of Neurosurgery at the First Affiliated Hospital of Xiamen University from March 2017 to August 2023. All included cases underwent intraoperative electrophysiological monitoring, and were divided into a study group (n = 18) and a control group (n = 23), based on whether DMS mapping technique was utilized.
Stereotact Funct Neurosurg
January 2025
Introduction: In 2015, directional leads have been released in Europe for deep brain stimulation (DBS) and have been particularly used for subthalamic nucleus (STN) DBS for Parkinson's disease (PD). In this study we aimed to compare an omnidirectional and directional leads cohort of PD patients when it comes to clinical effectiveness and to assess the correlation with volume of tissue activated - target overlap (VTA-target).
Methods: A total of 60 consecutive patients were retrospectively included.
Nat Methods
January 2025
Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
Teravoxel-scale, cellular-resolution images of cleared rodent brains acquired with light-sheet fluorescence microscopy have transformed the way we study the brain. Realizing the potential of this technology requires computational pipelines that generalize across experimental protocols and map neuronal activity at the laminar and subpopulation-specific levels, beyond atlas-defined regions. Here, we present artficial intelligence-based cartography of ensembles (ACE), an end-to-end pipeline that employs three-dimensional deep learning segmentation models and advanced cluster-wise statistical algorithms, to enable unbiased mapping of local neuronal activity and connectivity.
View Article and Find Full Text PDFParkinsonism Relat Disord
January 2025
University of Colorado Anschutz Medical Campus, Department of Neurosurgery, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!