A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3124
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Predicting the optimal position and direction of a ubiquitous ECG using a multi-scale model of cardiac electrophysiology. | LitMetric

In this study, we determined the optimal position and direction of a one-channel bipolar electrocardiogram (ECG), used ubiquitously in healthcare. To do this, we developed a three-dimensional (3D) electrophysiological model of the heart coupled with a torso model that can generate a virtual body surface potential map (BSPM). Finite element models of the atria and ventricles incorporated the electrophysiological dynamics of atrial and ventricular myocytes, respectively. The torso model, in which the electric wave pattern on the cardiac tissue is reflected onto the body surface, was implemented using a boundary element method. Using the model, we derived the optimal positions of two electrodes, 5 cm apart, of the bipolar ubiquitous ECG (U-ECG) for detecting the P, R, and T waves. This model can be used as a simulation tool to design U-ECG device for use for various arrhythmia and normal patients.

Download full-text PDF

Source
http://dx.doi.org/10.1109/IEMBS.2011.6090230DOI Listing

Publication Analysis

Top Keywords

optimal position
8
position direction
8
ubiquitous ecg
8
torso model
8
body surface
8
model
6
predicting optimal
4
direction ubiquitous
4
ecg multi-scale
4
multi-scale model
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!