Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3124
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In this study, we determined the optimal position and direction of a one-channel bipolar electrocardiogram (ECG), used ubiquitously in healthcare. To do this, we developed a three-dimensional (3D) electrophysiological model of the heart coupled with a torso model that can generate a virtual body surface potential map (BSPM). Finite element models of the atria and ventricles incorporated the electrophysiological dynamics of atrial and ventricular myocytes, respectively. The torso model, in which the electric wave pattern on the cardiac tissue is reflected onto the body surface, was implemented using a boundary element method. Using the model, we derived the optimal positions of two electrodes, 5 cm apart, of the bipolar ubiquitous ECG (U-ECG) for detecting the P, R, and T waves. This model can be used as a simulation tool to design U-ECG device for use for various arrhythmia and normal patients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/IEMBS.2011.6090230 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!