Cardiac fibrosis is known to alter cardiac conduction and promote reentry. Recent evidence indicates that fibrosis characterized by increased interstitial collagen accumulation and increased myofibroblast proliferation also promotes enhanced automaticity and early afterdepolarizations (EADs) causing triggered activity. Fibrosis then becomes an effective therapeutic target for the management of lethal cardiac arrhythmias. While oxidative stress with hydrogen peroxide (H(2)O(2)) is shown to readily promote EADs and triggered activity in isolated rat and rabbit ventricular myocytes however, this same stress fails to cause EADs in well-coupled, non-fibrotic hearts due to source-to-sink mismatches arising from cell-to-cell coupling. The triggered activity in the aged fibrotic hearts causes focal ventricular tachycardia (VT) that degenerates within seconds to ventricular fibrillation (VF) after the emergence of spatially discordant action potential duration alternans leading to wavebreak, reentry and VF. Computer simulations in 2D tissue incorporating variable degrees of fibrosis showed that intermediate (but not mild or very severe) fibrosis promoted EADs and TA. Human studies have shown that myocardial fibrosis was an independent predictor for arrhythmias including sustained VT and VF. A variety of drug classes including, torsemide, a loop diuretic, that inhibits the enzyme involved in the myocardial extracellular generation of collagen type I molecules and the inhibitors of the renin-angiotensin-aldosterone system (RAAS), the mineralocorticoid receptors and endothelin receptors reduce cardiac fibrosis with reduction of myocardial stiffness and improved ventricular function. It is hoped that in the near future effective antifibrotic drug regimen would be developed to reduce the risk of fibrosis related VT and VF.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3253497 | PMC |
Cardiol Res Pract
January 2025
Cardiovascular Research Center, Rajaie Cardiovascular Institute, Tehran, Iran.
Nondilated left ventricular cardiomyopathy (NDLVC) is a newly defined category of cardiomyopathy. We sought to evaluate and compare the phenotype of NDLVC with DCM using cardiac magnetic resonance (CMR) imaging and to investigate the prognostic significance of these conditions. One hundred and fifty patients suspected of having cardiomyopathy referred for CMR were recruited.
View Article and Find Full Text PDFJ Pathol
January 2025
Cardiorenal Translational Laboratory, Imas12 Research Institute, Hospital Universitario 12 de Octubre, Madrid, Spain.
Ischaemic heart disease (IHD) remains a major cause of death and morbidity. Klotho is a well-known anti-ageing factor with relevant cardioprotective actions, at least when renal dysfunction is present, but its actions are much less known when renal function is preserved. This study investigated Klotho as a biomarker and potential novel treatment of IHD-associated complications after myocardial infarction (MI) under preserved renal function.
View Article and Find Full Text PDFJ Cardiovasc Magn Reson
January 2025
Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hannover, Carl-Neuberg-Str. 1, 30625 Hannover, Germany. Electronic address:
Background: Patients after kidney transplantation (KTx) in childhood show a high prevalence of cardiac complications, but the underlying mechanism is still poorly understood. In adults, myocardial fibrosis detected in cardiac magnetic resonance (CMR) imaging is already an established risk factor. Data for children after KTx are not available.
View Article and Find Full Text PDFHeart Rhythm
January 2025
Cardiology Department, Tulane University School of Medicine, New Orleans, Louisiana, United States. Electronic address:
Background: Causal machine learning (ML) provides an efficient way of identifying heterogeneous treatment effect groups from hundreds of possible combinations, especially for randomized trial data.
Objective: The aim of this paper is to illustrate the potential of applying causal ML on the DECAAF II trial data. We proposed a causal ML model to predict the treatment response heterogeneity.
Proc Natl Acad Sci U S A
January 2025
Department of Immunology, School of Medicine, UConn Health, Farmington, CT 06030.
Monocytes are critical in controlling tissue infections and inflammation. Monocyte dysfunction contributes to the inflammatory pathogenesis of cystic fibrosis (CF) caused by CF transmembrane conductance regulator (CFTR) mutations, making CF a clinically relevant disease model for studying the contribution of monocytes to inflammation. Although CF monocytes exhibited adhesion defects, the precise mechanism is unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!