AI Article Synopsis

  • A build/couple/pair (B/C/P) strategy was used to create a library of 7936 different 12-membered macrolactams.
  • All 8 stereoisomers of a linear amine precursor were transformed into 16 macrocyclic scaffolds through head-to-tail cyclization.
  • These scaffolds were then diversified further by capping amine functionalities using a targeted reagent selection approach to cover a wide range of chemical variations.

Article Abstract

A build/couple/pair (B/C/P) strategy was employed to generate a library of 7936 stereochemically diverse 12-membered macrolactams. All 8 stereoisomers of a common linear amine precursor were elaborated to form the corresponding 8 stereoisomers of two regioisomeric macrocyclic scaffolds via head-to-tail cyclization. Subsequently, these 16 scaffolds were further diversified via capping of two amine functionalities on SynPhase Lanterns. Reagents used for solid-phase diversification were selected using a sparse matrix design strategy with the aim of maximizing coverage of chemical space while adhering to a preset range of physicochemical properties.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3289975PMC
http://dx.doi.org/10.1021/co200161zDOI Listing

Publication Analysis

Top Keywords

stereochemically diverse
8
head-to-tail cyclization
8
build/couple/pair strategy
4
strategy synthesis
4
synthesis stereochemically
4
diverse macrolactams
4
macrolactams head-to-tail
4
cyclization build/couple/pair
4
build/couple/pair b/c/p
4
b/c/p strategy
4

Similar Publications

Development of an FKBP12-recruiting chemical-induced proximity DNA-encoded library and its application to discover an autophagy potentiator.

Cell Chem Biol

December 2024

Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA. Electronic address:

Chemical inducers of proximity (CIPs) are molecules that recruit one protein to another and introduce new functionalities toward modulating protein states and activities. While CIP-mediated recruitment of E3 ligases is widely exploited for the development of degraders, other therapeutic modalities remain underexplored. We describe a non-degrader CIP-DNA-encoded library (CIP-DEL) that recruits FKBP12 to target proteins using non-traditional acyclic structures, with an emphasis on introducing stereochemically diverse and rigid connectors to attach the combinatorial library.

View Article and Find Full Text PDF

Ion Hydration Enables Generality in Asymmetric Catalysis: Desymmetrization to P-Stereogenic Triarylphosphine Derivatives.

Angew Chem Int Ed Engl

December 2024

Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 2, Singapore, 117543, Singapore.

Asymmetric synthesis relies on seamless transmission of stereochemical information from a chiral reagent/catalyst to a prochiral substrate. The disruption by substrates' structural changes presents a hurdle in innovating generality-oriented asymmetric catalysis. Here, we report a strategy for substrate adaptability by exploiting a fundamental physicochemical phenomenon-ion hydration, in developing remote desymmetrization to access P-stereogenic triarylphosphine oxides and sulfides.

View Article and Find Full Text PDF

Catalytic asymmetric conjugate additions of carbon nucleophiles have emerged as a potent tool for constructing multi-stereogenic molecules with precise stereochemical control. This review explores the concept of diastereodivergence in such reactions, focusing on strategies to achieve selective access to diverse diastereomeric products upon carbon-carbon bond formation. Drawing from a rich array of examples, we delve into key approaches for controlling the stereochemical outcome of these transformations, including alteration of alkene geometry, fine-tuning of reaction parameters, synergistic catalysis, and isomerization of conjugate adducts.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on how isomerisation in photochromic spirocompounds affects their functionality, particularly in crystalline forms.
  • Advanced femtosecond spectroscopy shows that when crystalline spiropyran is excited with a 266 nm pulse, rapid bond breaking and isomerisation occur, forming merocyanine in less than 2 picoseconds.
  • These findings indicate that the process is highly reversible and could lead to new ultrafast technologies using spiropyran-based materials.
View Article and Find Full Text PDF

Metals are essential components for the structure and function of many proteins. However, accurate modelling of their coordination environments remains a challenge due to the complexity and diversity of metal-coordination geometries. To address this, a method is presented for extracting and analysing coordination information, including bond lengths and angles, from the Crystallography Open Database.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!