Role of BMI1, a stem cell factor, in cancer recurrence and chemoresistance: preclinical and clinical evidences.

Stem Cells

Department of Molecular Chemoprevention and Therapeutics, The Hormel Institute, University of Minnesota, Austin, MN, USA.

Published: March 2012

There is increasing evidence that a variety of cancers arise from transformation of normal stem cells to cancer stem cells (CSCs). CSCs are thought to sustain cancer progression, invasion, metastasis, and recurrence after therapy. Reports suggest that CSCs are highly resistant to conventional therapy. Emerging evidences show that the chemoresistance of CSCs are in part due to the activation of B cell-specific Moloney murine leukemia virus integration site 1 (BMI1), a stem cell factor, and a polycomb group family member. BMI1 is reported to regulate the proliferation activity of normal, stem, and progenitor cells. BMI1 plays a role in cell cycle, cell immortalization, and senescence. Numerous studies demonstrate that BMI1, which is upregulated in a variety of cancers, has a positive correlation with clinical grade/stage and poor prognosis. Although evidences are in support of the role of BMI1 as a factor in chemoresistance displayed by CSCs, its mechanism of action is not fully understood. In this review, we provide summary of evidences (with mechanism of action established) suggesting the significance of BMI1 in chemoresistance and recurrence of CSCs.

Download full-text PDF

Source
http://dx.doi.org/10.1002/stem.1035DOI Listing

Publication Analysis

Top Keywords

role bmi1
8
bmi1 stem
8
stem cell
8
cell factor
8
variety cancers
8
normal stem
8
stem cells
8
mechanism action
8
cscs
6
bmi1
6

Similar Publications

Cadmium accumulation in the body can damage a variety of organs and impair their development and functions. In the present study, we investigated the effect of cadmium on the stemness and proliferation of normal bovine mammary epithelial cells (BMECs). Normal bovine mammary epithelial cells treated with cadmium chloride were assessed for the expression of stemness-related proteins and cell proliferation.

View Article and Find Full Text PDF

Introduction: Hematologic malignancies, originating from uncontrolled growth of hematopoietic and lymphoid tissues, constitute 6.5% of all cancers worldwide. Various risk factors including genetic disorders and single nucleotide polymorphisms play a role in the pathogenesis of hematologic malignancies.

View Article and Find Full Text PDF

Optimizing Stem Cell Expansion: The Role of Substrate Stiffness in Enhancing Dental Pulp Stem Cell Quiescence and Regeneration.

J Endod

January 2025

Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada; Department of Dentistry, Mt. Sinai Hospital, Toronto, ON, Canada. Electronic address:

Introduction: Quiescent stem cells exhibit unique self-renewal and engraftment abilities vital for regenerative therapies, but these diminish during ex vivo culture. This study investigates how substrate stiffness regulates the balance between dental pulp stem cell (DPSC) quiescence, activation, and senescence and explores the role of extracellular matrix stiffness in modulating DPSC fate via the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway.

Methods: Polydimethylsiloxane substrates with varying stiffness in 2D (2 kPa, 50 kPa) and 3D (50 kPa) were fabricated.

View Article and Find Full Text PDF

Background: B-cell specific Moloney MLV insertion site-1 (Bmi-1) belongs to the polycomb group (PcG) gene and is a transcriptional suppressor to maintain appropriate gene expression patterns during development. To investigate whether the Bmi-1 gene has a corrective effect on bone senescence induced in Bmi-1 mice through regulating the bone microenvironment.

Methods: Littermate heterozygous male and female mice (Bmi-1) were used in this study.

View Article and Find Full Text PDF

Background: Glioblastoma (GBM) is the most common primary brain tumor in adults and has a median survival of less than 15 months. Advancements in the field of epigenetics have expanded our understanding of cancer biology and helped explain the molecular heterogeneity of these tumors. B-cell-specific Moloney murine leukemia virus insertion site-1 (Bmi-1) is a member of the highly conserved polycomb group (PcG) protein family that acts as a transcriptional repressor of multiple genes, including those that determine cell proliferation and differentiation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!