Mn₂O₃ nanowires with diameter ~70 nm were synthesized by a simple hydrothermal method using Mn(II) nitrate as precursor. X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy (TEM), and energy dispersive X-ray spectroscopy techniques were employed to study structural features and chemical composition of the synthesized nanowires. A biological evaluation of the antimicrobial activity and cytotoxicity of Mn₂O₃ nanowires was carried out using Escherichia coli and mouse myoblast C₂C₁₂ cells as model organism and cell lines, respectively. The antibacterial activity and the acting mechanism of Mn₂O₃ nanowires were investigated by using growth inhibition studies and analyzing the morphology of the bacterial cells following the treatment with nanowires. These results suggest that the pH is critical factor affecting the morphology and production of the Mn₂O₃ nanowires. Method developed in the present study provided optimum production of Mn₂O₃ nanowires at pH ~ 9. The Mn₂O₃ nanowires showed significant antibacterial activity against the E. coli strain, and the lowest concentration of Mn₂O₃ nanowires solution inhibiting the growth of E. coli was found to be 12.5 μg/ml. TEM analysis demonstrated that the exposure of the selected microbial strains to the nanowires led to disruption of the cell membranes and leakage of the internal contents. Furthermore, the cytotoxicity results showed that the inhibition of C₂C₁₂ increases with the increase in concentration of Mn₂O₃ nanowires. Our results for the first time highlight the cytotoxic and bactericidal potential of Mn₂O₃ nanowires which can be utilized for various biomedical applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00253-012-3878-6 | DOI Listing |
Nano Converg
January 2025
Bendable Electronics and Sustainable Technologies (BEST) Group, Electrical and Computer Engineering Department, Northeastern University, Boston, MA, 02115, USA.
The intriguing way the receptors in biological skin encode the tactile data has inspired the development of electronic skins (e-skin) with brain-inspired or neuromorphic computing. Starting with local (near sensor) data processing, there is an inherent mechanism in play that helps to scale down the data. This is particularly attractive when one considers the huge data produced by large number of sensors expected in a large area e-skin such as the whole-body skin of a robot.
View Article and Find Full Text PDFNat Commun
January 2025
Institute of Optoelectronic Thin Film Devices and Technology, Key Laboratory of Optoelectronic Thin Film Devices and Technology of Tianjin, College of Electronic Information and Optical Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, China.
Biological neural systems seamlessly integrate perception and action, a feat not efficiently replicated in current physically separated designs of neural-imitating electronics. This segregation hinders coordination and functionality within the neuromorphic system. Here, we present a flexible device tailored for neuromorphic computation and muscle actuation.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Mechanical Engineering, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA, USA.
Effective heat dissipation remains a grand challenge for energy-dense devices and systems. As heterogeneous integration becomes increasingly inevitable in electronics, thermal resistance at interfaces has emerged as a critical bottleneck for thermal management. However, existing thermal interface solutions are constrained by either high thermal resistance or poor reliability.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing 100081, P. R. China.
Efficient thermal generation from solar/electric energy in transparent films remains challenging due to the limited toolbox of high-performance thermal generation materials and methods for microstructure engineering. Here, we proposed a two-step strategy to introduce hierarchical wrinkles to the MXene composite films with high transparency, leading to upgraded photo/electrothermal conversion efficiency. Specifically, the thin film contains protic acid-treated MXene layers assembled with Ag nanowires (H-MXene/Ag NWs).
View Article and Find Full Text PDFFood Chem
January 2025
College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China; University Key Laboratory of Food Processing Byproducts for Advanced Development and High Value Utilization, Xi'an 710119, China. Electronic address:
Bioreceptors are increasingly popular for selective aroma sensing but face challenges with receptor separation and cell culture. Here, we developed a bioreceptor-free electronic nose employing Mn-metal organic framework (Mn-MOF) nanonets as sensing materials for rapid electrochemical quantification of (E)-2-hexenal, a characteristic aroma commonly found in various foods. A simple solvent-mediated morphology engineering technology was proposed to create Mn-MOF structures, including nanoparticles, nanowires, and nanonets.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!