A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Pigment dispersing hormone modulates spontaneous electrical activity of the cerebroid ganglion and synchronizes electroretinogram circadian rhythm in crayfish Procambarus clarkii. | LitMetric

In crayfish, one very well-studied circadian rhythm is that of electroretinogram (ERG) amplitude. The cerebroid ganglion has been considered a plausible site for the circadian pacemaker of this rhythm and for the retinular photoreceptors, as the corresponding effectors. The pigment dispersing hormone (PDH) appears to synchronize ERG rhythm, but its characterization as a synchronizer cue remains incomplete. The main purposes of this work were a) to determine whether PDH acts on the cerebroid ganglion, and b) to complete its characterization as a non-photic synchronizer. Here we show that PDH increases the number of the spontaneous potentials of the cerebroid ganglion, reaching 149.92±6.42% of the activity recorded in the controls, and that daily application of PDH for 15 consecutive days adjusts the ERG circadian rhythm period to 24.0±0.2h and the end of the activity period of the rhythm coincides with the injection of the hormone. In this work, we hypothesized that in crayfish, PDH transmits the "day" signal to the ERG circadian system and acts upon both the presumptive circadian pacemaker and the corresponding effectors to reinforce the synchronization of the system.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cbpa.2012.01.003DOI Listing

Publication Analysis

Top Keywords

cerebroid ganglion
16
circadian rhythm
12
pigment dispersing
8
dispersing hormone
8
circadian pacemaker
8
corresponding effectors
8
erg circadian
8
circadian
6
rhythm
6
pdh
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!