Two hypotheses were tested in this study. First, blockade of neural activity by lidocaine immediately following the retrieval of a memory may impair the reconsolidation and subsequent expression of that memory. Second, a non-retrieved memory would not be affected by this lidocaine treatment. Since the basolateral nucleus of the amygdala (BLA) is involved in emotion-related memory, an intra-BLA lidocaine infusion was used immediately after the retrieval of two emotion-related memories, the step-through passive avoidance response (PA) and cocaine-induced conditioned place preference (CPP). Intra-BLA lidocaine infusion immediately after cocaine-induced CPP retrieval diminished CPP magnitude in retests. However, intra-BLA lidocaine infusion alone did not affect cocaine-induced CPP performance. Intra-BLA lidocaine infusion immediately after PA retrieval decreased PA performance in retests. Omission of PA retrieval procedure, intra-BLA lidocaine infusion did not affect subsequent PA performance. Surprisingly, intra-BLA lidocaine infusion immediately following the retrieval of PA or cocaine-induced CPP diminished both PA and cocaine-induced CPP performance in the retests. Finally, Fos-staining results revealed that a number of BLA neurons were activated by the retrieval of both cocaine-induced CPP and PA. We conclude that inactivation of neural activity in BLA immediately following retrieval of a fear or cocaine-conditioned memory can impair subsequent expression of both memories. More importantly, retrieval of a memory does not seem to be an absolute condition for rapidly changing the memory.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.nlm.2012.01.001 | DOI Listing |
Front Behav Neurosci
October 2012
Department of Psychology, The University of Michigan, Ann Arbor MI, USA.
Activation of β-adrenoceptors in the basolateral complex of the amygdala (BLA) modulates memory through interactions with multiple memory systems. The cellular mechanisms for this interaction remain unresolved. Memory-modulating BLA manipulations influence expression of the protein product of the immediate early gene activity-regulated cytoskeletal-associated protein (Arc) in the dorsal hippocampus, and hippocampal expression of Arc protein is critically involved in memory consolidation and long-term potentiation.
View Article and Find Full Text PDFBehav Brain Res
July 2012
Department of Physiology, Paramedical Sciences Faculty, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
Previous studies have shown that Ghrelin increases memory retention. They have also indicated that amygdale is involved in memory storage. The present study examined the role of basolateral amygdala (BLA) in Ghrelin-induced retention improvement, using reversible inactivation of this region with lidocaine.
View Article and Find Full Text PDFNeurobiol Learn Mem
February 2012
Institute of Basic Medical Sciences, National Cheng Kung University College of Medicine, Tainan 701, Taiwan.
Two hypotheses were tested in this study. First, blockade of neural activity by lidocaine immediately following the retrieval of a memory may impair the reconsolidation and subsequent expression of that memory. Second, a non-retrieved memory would not be affected by this lidocaine treatment.
View Article and Find Full Text PDFLearn Mem
January 2006
Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, USA.
Previous findings indicate that the noradrenergic, dopaminergic, and cholinergic innervations of the basolateral amygdala (BLA) modulate memory consolidation. The current study investigated whether memory enhancement induced by post-training intra-BLA infusions of a beta-adrenergic or muscarinic cholinergic agonist requires concurrent activation of dopamine (DA) receptors in the BLA. Rats with implanted BLA cannulae were trained on an inhibitory avoidance (IA) task and, 48 h later, tested for retention.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
July 2005
Center for the Neurobiology of Learning and Memory, and Department of Neurobiology and Behavior, 218 Bonney Research Laboratory, University of California, Irvine, CA 92697-3800, USA.
Activation of beta-adrenoceptors in the basolateral complex of the amygdala (BLA) modulates memory storage processes and long-term potentiation in downstream targets of BLA efferents, including the hippocampus. Here, we show that this activation also increases hippocampal levels of activity-regulated cytoskeletal protein (Arc), an immediate-early gene (also termed Arg 3.1) implicated in hippocampal synaptic plasticity and memory consolidation processes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!