Effects of edaravone, a free radical scavenger, on post-traumatic impairment of long-term potentiation (LTP) were examined in granule cell layers of the dentate gyrus (DG) in vitro. Field EPSPs (fEPSPs) evoked by stimulation of the perforant path (PP) were recorded extracellularly in the DG one week after a moderate impact applied by a fluid percussion injury (FPI) device. High frequency stimulation (HFS) of the PP caused LTP of the fEPSP-slope in slices from naïve and sham-operated rats, however, the LTP was strongly depressed in slices from FPI rats. Intraperitoneal administration of edaravone 15 min after FPI prevented the hyperactivities of DG neurons and attenuated impairment of the LTP in FPI rat dentate granular cells. In vitro application of spermine NONOate (sp-NO), a nitric oxide (NO) donor, for 30 min produced a gradual increase in the fEPSP-slope, lasting for more than 2 h. Edaravone attenuated the enhancement of the fEPSP-slope induced by sp-NO. After sp-NO treatment HFS could not produce an obvious LTP in the DG granule cell layer. Pretreatment of DG slices with edaravone prevented the sp-NO-induced impairment of LTP. These results suggest that administration of edaravone after FPI protects against post-traumatic impairment of LTP in granule cell layers of the DG, possibly by scavenging NO-related radicals.

Download full-text PDF

Source
http://dx.doi.org/10.2739/kurumemedj.58.47DOI Listing

Publication Analysis

Top Keywords

granule cell
16
impairment ltp
12
cell layer
8
dentate gyrus
8
post-traumatic impairment
8
cell layers
8
administration edaravone
8
ltp granule
8
ltp
7
edaravone
6

Similar Publications

SummaryPrevious studies have suggested that chromogranin A (CgA) is a partner molecule of secretogranin III (SgIII). In mouse pituitary corticotroph-derived AtT-20 cells, SgIII plays a role in sorting CgA/hormone aggregates into secretory granules (SGs). Although CgA expression is equivocal, CgB is clearly detectable in the rat pituitary corticotrophs.

View Article and Find Full Text PDF

Chronic hard-to-heal wounds pose a significant threat to patients' health and quality of life, and their clinical management remains a challenge. Adipose-derived stem cell exosomes (ADSC-exos) have shown promising results in promoting diabetic wound healing. However, effectively enhancing the retention of exosomes in wounds for treatment remains a key issue that needs to be addressed.

View Article and Find Full Text PDF

Chinese herbal formula Regan Saibisitan alleviates airway inflammation of chronic bronchitis via inhibiting the JAK2/STAT3 pathway.

J Ethnopharmacol

January 2025

Pharmacy School, Shihezi University, Xinjiang, 832000, China; Xinjiang Key Laboratory of Uygur Medicine, Xinjiang Institute of Materia Medica, Xinjiang, 830000, China. Electronic address:

Ethnopharmacological Relevance: Regan Saibisitan (RGS) is a classic prescription used to treat cough, pneumonia, and other respiratory infections in Uygur medicine. It is a granule composed of 12 kinds of medicinal materials. However, the mechanism by which RGS regulates lung disease remains unclear.

View Article and Find Full Text PDF

Background: Fabry disease (FD) patients are known to be at high risk of developing neuropsychiatric symptoms such as anxiety, depression and cognitive deficits. Despite this, they are underdiagnosed and inadequately treated. It is unknown whether these symptoms arise from pathological glycosphingolipid deposits or from cerebrovascular abnormalities affecting neuronal functions in the central nervous system.

View Article and Find Full Text PDF

Background: MRI offers potential noninvasive detection of Alzheimer's micropathology. The AD hippocampus exhibits microscopic pathological changes such as tau tangles, iron accumulation and late-stage amyloid. Validating these changes from ultra-high-resolution ex-vivo MRI through histology is challenging due to nonlinear 3D deformations between MRI and histological samples.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!