Background: Vascular Endothelial Growth Factors (VEGFs) and their receptors (VEGF-Rs) are important regulators for angiogenesis and lymphangiogenesis. VEGFs and VEGF-Rs are not only expressed on endothelial cells but also on various subtypes of solid tumors and leukemias contributing to the growth of the malignant cells. This study was performed to examine whether VEGF-R2 (KDR) and VEGF-R3 (FLT4) are regulated by DNA methylation.
Methods: Real-time (RT) PCR analysis was performed to quantify KDR and FLT4 expression in some ninety leukemia/lymphoma cell lines, human umbilical vein endothelial cells (HUVECs) and dermal microvascular endothelial cells (HDMECs). Western blot analyses and flow cytometric analyses confirmed results at the protein level. After bisulfite conversion of DNA we determined the methylation status of KDR and FLT4 by DNA sequencing and by methylation specific PCR (MSP). Western blot analyses were performed to examine the effect of VEGF-C on p42/44 MAPK activation.
Results: Expression of KDR and FLT4 was observed in cell lines from various leukemic entities, but not in lymphoma cell lines: 16% (10/62) of the leukemia cell lines expressed KDR, 42% (27/65) were FLT4 positive. None of thirty cell lines representing six lymphoma subtypes showed more than marginal expression of KDR or FLT4. Western blot analyses confirmed KDR and FLT4 protein expression in HDMECs, HUVECs and in cell lines with high VEGF-R mRNA levels. Mature VEGF-C induced p42/44 MAPK activation in the KDR- /FLT4(+) cell line OCI-AML1 verifying the model character of this cell line for VEGF-C signal transduction studies. Bisulfite sequencing and MSP revealed that GpG islands in the promoter regions of KDR and FLT4 were unmethylated in HUVECs, HDMECs and KDR(+) and FLT4(+) cell lines, whereas methylated cell lines did not express these genes. In hypermethylated cell lines, KDR and FLT4 were re-inducible by treatment with the DNA demethylating agent 5-Aza-2'deoxycytidine, confirming epigenetic regulation of both genes.
Conclusions: Our data show that VEGF-Rs KDR and FLT4 are silenced by DNA methylation. However, if the promoters are unmethylated, other factors (e.g. transactivation factors) determine the extent of KDR and FLT4 expression.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3297533 | PMC |
http://dx.doi.org/10.1186/1471-2407-12-19 | DOI Listing |
Bioorg Med Chem Lett
November 2024
Arromax Pharmatech Co. Ltd. Sangtiandao Innovation Park, No. 1 Huayun Road, SIP, Suzhou 215123, PR China. Electronic address:
Hepatocellular carcinoma (HCC) is considered as one of the leading causes of death in liver disease patients. Several signal transduction pathways are involved in HCC pathogenesis. Multikinase inhibitors (MKIs) show beneficial effects for HCC and the FDA approved a few MKIs including sorafenib, lenvatinib for HCC treatments.
View Article and Find Full Text PDFNeural Dev
September 2024
UMR 1188, Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Université de La Réunion, INSERM, Saint-Pierre, La Réunion, France.
The complex interplay between vascular signaling and neurogenesis in the adult brain remains a subject of intense research. By exploiting the unique advantages of the zebrafish model, in particular the persistent activity of neural stem cells (NSCs) and the remarkable ability to repair brain lesions, we investigated the links between NSCs and cerebral blood vessels. In this study, we first examined the gene expression profiles of vascular endothelial growth factors aa and bb (vegfaa and vegfbb), under physiological and regenerative conditions.
View Article and Find Full Text PDFNat Ecol Evol
October 2024
Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China.
The evolution of the vertebrate liver is a prime example of the evolution of complex organs, yet the driving genetic factors behind it remain unknown. Here we study the evolutionary genetics of liver by comparing the amphioxus hepatic caecum and the vertebrate liver, as well as examining the functional transition within vertebrates. Using in vivo and in vitro experiments, single-cell/nucleus RNA-seq data and gene knockout experiments, we confirm that the amphioxus hepatic caecum and vertebrate liver are homologous organs and show that the emergence of ohnologues from two rounds of whole-genome duplications greatly contributed to the functional complexity of the vertebrate liver.
View Article and Find Full Text PDFEcotoxicol Environ Saf
September 2024
Engineering Research Center of Key Technique for Biotherapy of Guangdong Province, Shantou University Medical College, Shantou 515041, China. Electronic address:
Estrogens and estrogenic chemicals are endocrine-disrupting chemicals (EDCs). The potential toxicity of EDCs to humans and aquatic organisms has become increasingly concerning. However, at present, the potential toxic mechanisms of EDCs on neural and vascular development are still being fully investigated.
View Article and Find Full Text PDFSci Rep
June 2024
Computer Aided Drug Designing and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi, Tamil Nadu, 630003, India.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!