We develop individual-based Monte Carlo methods to explore how climate change can alter insect voltinism under varying greenhouse gas emissions scenarios by using input distributions of diapause termination or spring emergence, development rate, and diapause initiation, linked to daily temperature and photoperiod. We show concurrence of these projections with a field dataset, and then explore changes in grape berry moth, Paralobesia viteana (Clemens), voltinism that may occur with climate projections developed from the average of three climate models using two different future emissions scenarios from the International Panel of Climate Change (IPCC). Based on historical climate data from 1960 to 2008, and projected downscaled climate data until 2099 under both high (A1fi) and low (B1) greenhouse gas emission scenarios, we used concepts of P. viteana biology to estimate distributions of individuals entering successive generations per year. Under the low emissions scenario, we observed an earlier emergence from diapause and a shift in mean voltinism from 2.8 to 3.1 generations per year, with a fraction of the population achieving a fourth generation. Under the high emissions scenario, up to 3.6 mean generations per year were projected by the end of this century, with a very small fraction of the population achieving a fifth generation. Changes in voltinism in this and other species in response to climate change likely will cause significant economic and ecological impacts, and the methods presented here can be readily adapted to other species for which the input distributions are reasonably approximated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1603/EN10099 | DOI Listing |
Sci Rep
January 2025
College of Ecology and Environment, Hainan University, Haikou, 570228, China.
Agroforestry systems are known to enhance soil health and climate resilience, but their impact on greenhouse gas (GHG) emissions in rubber-based agroforestry systems across diverse configurations is not fully understood. Here, six representative rubber-based agroforestry systems (encompassing rubber trees intercropped with arboreal, shrub, and herbaceous species) were selected based on a preliminary investigation, including Hevea brasiliensis intercropping with Alpinia oxyphylla (AOM), Alpinia katsumadai (AKH), Coffea arabica (CAA), Theobroma cacao (TCA), Cinnamomum cassia (CCA), and Pandanus amaryllifolius (PAR), and a rubber monoculture as control (RM). Soil physicochemical properties, enzyme activities, and GHG emission characteristics were determined at 0-20 cm soil depth.
View Article and Find Full Text PDFSci Total Environ
January 2025
Department of Biology, Ecology and Earth Sciences (DIBEST), University of Calabria, Ponte Bucci street, cube 15B, 87036 Rende, Italy.
The work aims to estimate natural greenhouse gas emissions from soils in the Sibari Coastal Plain (Southern Italy), to understand (i) the contribution in terms of the total amount of CO and CH emitted in non-volcanic areas, (ii) the relationship among emitted gas, land use, organic matter and tectonic structures, and (iii) their potential environmental implications. Data were elaborated with statistical and geostatistical methods to separate the different populations and obtain prediction and probability maps. Methane fluxes had values consistently below the detection limit (0.
View Article and Find Full Text PDFBr J Hosp Med (Lond)
January 2025
Nuffield Department of Primary Health Care Sciences, University of Oxford, Oxford, UK.
The contribution of health care to environmental and climate crises is significant, under-addressed, and with consequences for human health. This editorial is a call to action. Focusing on pharmaceuticals as a major environmental threat, we examine pharmaceutical impacts across their lifecycle, summarising greenhouse gas emissions, pollution, and biodiversity loss, and outlining challenges and opportunities to reduce this impact.
View Article and Find Full Text PDFNutrients
January 2025
Division of Human Nutrition and Health, Wageningen University & Research, 6700 AB Wageningen, The Netherlands.
Background: Rapid socio-economic developments confront China with a rising consumption of ultra-processed foods (UPFs) and ultra-processed drinks (UPDs). This study aims to evaluate their potential impact on diet transformation towards sustainability including nutrition, environmental sustainability, and diet-related cost.
Methods: Dietary intake was assessed by 24 h recalls in 27,311 participants (age: 40.
Insects
January 2025
Protein Chemistry and Bioactive Peptides Laboratory, Purdue University, 745 Agriculture Mall, West Lafayette, IN 47907, USA.
Farmed edible insects are considered a potential resource to help address food security concerns toward the year 2050. The sustainability (e.g.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!