Unlabelled: There is a critical need to develop and rigorously validate molecular imaging biomarkers to aid diagnosis and characterization of primary brain tumors. Elevated expression of translocator protein (TSPO) has been shown to predict disease progression and aggressive, invasive behavior in a variety of solid tumors. Thus, noninvasive molecular imaging of TSPO expression could form the basis of a novel, predictive cancer imaging biomarker. In quantitative preclinical PET studies, we evaluated a high-affinity pyrazolopyrimidinyl-based TSPO imaging ligand, N,N-diethyl-2-(2-(4-(2-(18)F-fluoroethoxy)phenyl)-5,7-dimethylpyrazolo[1,5-a]pyrimidin-3-yl)acetamide ((18)F-DPA-714), as a translational probe for quantification of TSPO levels in glioma.

Methods: Glioma-bearing rats were imaged with (18)F-DPA-714 in a small-animal PET system. Dynamic images were acquired simultaneously on injection of (18)F-DPA-714 (130-200 MBq/0.2 mL). Blood was collected to derive the arterial input function (AIF), with high-performance liquid chromatography radiometabolite analysis performed on selected samples for AIF correction. Compartmental modeling was performed using the corrected AIF. Specific tumor cell binding of DPA-714 was evaluated by radioligand displacement of (3)H-PK 11195 with DPA-714 in vitro and displacement of (18)F-DPA-714 with an excess of DPA-714 in vivo. Immediately after imaging, tumor and healthy brain tissues were harvested for validation by Western blotting and immunohistochemistry.

Results: (18)F-DPA-714 was found to preferentially accumulate in tumors, with modest uptake in the contralateral brain. Infusion with DPA-714 (10 mg/kg) displaced (18)F-DPA-714 binding by greater than 60% on average. Tumor uptake of (18)F-DPA-714 was similar to another high-affinity TSPO imaging ligand, (18)F-N-fluoroacetyl-N-(2,5-dimethoxybenzyl)-2-phenoxyaniline, and agreed with ex vivo assay of TSPO levels in tumor and healthy brain.

Conclusion: These studies illustrate the feasibility of using (18)F-DPA-714 for visualization of TSPO-expressing brain tumors. Importantly, (18)F-DPA-714 appears suitable for quantitative assay of tumor TSPO levels in vivo. Given the relationship between elevated TSPO levels and poor outcome in oncology, these studies suggest the potential of (18)F-DPA-714 PET to serve as a novel predictive cancer imaging modality.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3391587PMC
http://dx.doi.org/10.2967/jnumed.111.095653DOI Listing

Publication Analysis

Top Keywords

tspo levels
16
18f-dpa-714
10
tspo
9
quantitative preclinical
8
imaging
8
imaging tspo
8
tspo expression
8
molecular imaging
8
brain tumors
8
novel predictive
8

Similar Publications

Chronic neuropathic pain is a debilitating condition that results from damage to the nervous system. Current treatments are largely ineffective, with limited understanding of the underlying mechanisms hindering development of effective treatments. Preclinical models of neuropathic pain have revealed that non-neural changes are important for the development of neuropathic pain, although these data are derived almost exclusively from post-mortem histological analyses.

View Article and Find Full Text PDF

An aberrant pro-inflammatory microglia response has been associated with most neurodegenerative disorders. Identifying microglia druggable checkpoints to restore their physiological functions is an emerging challenge. Recent data have shown that microglia produce de novo neurosteroids, endogenous molecules exerting potent anti-inflammatory activity.

View Article and Find Full Text PDF
Article Synopsis
  • Recent autopsy studies show that interface astroglial scarring (IAS) can occur at the gray-white matter junction in military personnel who experience repeated blast brain injuries.
  • There is currently no neuroimaging test available to detect IAS, making it difficult to diagnose and treat these injuries.
  • In a study of 27 U.S. Special Operations Forces personnel, five individuals (18.5%) showed elevated neuroinflammation signals at the gray-white matter interface compared to healthy controls, suggesting that TSPO PET scans may help identify repeated blast brain injury.
View Article and Find Full Text PDF

Remimazolam inhibits apoptosis of endothelial and epithelial cells by activating the PI3K/AKT pathway in acute lung injury.

Int Immunopharmacol

December 2024

Department of Critical Care Medicine, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Key Laboratory of Surgical Critical Care and Life Support, Xi'an Jiaotong University, Ministry of Education, Xi'an, China. Electronic address:

Background: Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are significant burdens on global health. Remimazolam (REM), a novel sedative, has shown potential in its anti-inflammatory effects. However, a lack of evidence currently hinders our ability to determine if REM can improve ALI/ARDS.

View Article and Find Full Text PDF

The treatment of stress-related disorders such as anxiety and depression is still challenging. One potential therapeutical option are neurosteroids. Their synthesis is promoted by ligands of the mitochondrial translocator protein 18 kDa (TSPO).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!